亚热带植物科学 ›› 2025, Vol. 54 ›› Issue (5): 578-586.DOI: 10.3969/j.issn.1009-7791.2025.05.013
李秋佳1,邱秉慧1,李凌雨1,陈 爽2,余克琴1*
收稿日期:2025-04-27
接受日期:2025-09-01
出版日期:2025-10-31
发布日期:2025-12-17
通讯作者:
余克琴
基金资助:LI Qiu-jia1, QIU Bing-hui1, LI Ling-yu1, CHEN Shuang2, YU Ke-qin1*
Received:2025-04-27
Accepted:2025-09-01
Online:2025-10-31
Published:2025-12-17
Contact:
YU Ke-qin
摘要: 三维基因组学作为后基因组学时代的研究热点,致力于揭示基因组在细胞核内的三维空间结构及其与基因表达调控等生物过程的关联。相较于动物,植物三维基因组学起步较晚且面临诸多技术难题,但近年来取得显著进展。本文系统梳理植物三维基因组学研究的技术手段发展、植物基因组的三维层级结构特征,并探讨研究过程中面临的技术挑战。
中图分类号:
李秋佳, 邱秉慧, 李凌雨, 陈 爽, 余克琴. 植物三维基因组学研究进展[J]. 亚热带植物科学, 2025, 54(5): 578-586.
LI Qiu-jia, QIU Bing-hui, LI Ling-yu, CHEN Shuang, YU Ke-qin. Advances in Plant Three-Dimensional Genomics Research[J]. Subtropical Plant Science, 2025, 54(5): 578-586.
| [1] 李国亮, 阮一骏, 谷瑞升, 杜生明. 起航三维基因组学研究[J]. 科学通报, 2014, 59: 1165–1174. [2] Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation [J]. Science, 2002, 295: 1306–1311. [3] Lieberman-Aiden E, Van Berkum N L, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie B R, Sabo P J, Dorschner M O. Comprehensive mapping of long-range interactions reveals folding principles of the human genome [J]. Science, 2009, 326(5950): 289. [4] Rao S S, Huntley M H, Durand N C, Stamenova E K, Bochkov I D, Robinson J T, Sanborn A L, Machol I, Omer A D, Lander E S. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping [J]. Cell, 2014, 159(7): 1665–1680. [5] Hughes J R, Roberts N, Mcgowan S, Hay D, Giannoulatou E, Lynch M, De Gobbi M, Taylor S, Gibbons R, Higgs D R. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment [J]. Nature Genetics, 2014, 46(2): 205–212. [6] Ma W, Ay F, Lee C, Duan Z. Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes [J]. Nature Methods, 2014, 12(1): 71–78. [7] Nagano T, Lubling Y, Stevens T J, Schoenfelder S, Yaffe E, Dean W, Laue E D, Tanay A, Fraser P. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure [J]. Nature, 2013, 502(7469): 59. [8] Fang R, Yu M, Li G, Chee S, Liu T, Schmitt A D, Ren B. Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq [J]. Cell Research, 2016, 26(12): 1345–1348. [9] Fullwood M J, Liu M H, Pan Y F, Liu J, Al H X E. An oestrogen- receptor-alpha-bound human chromatin interactome [J]. Nature, 2009, 462(7269): 58. [10] Mumbach M R, Rubin A J, Flynn R A, Dai C, Chang H Y. HiChIP: efficient and sensitive analysis of protein-directed genome architecture [J]. Nature Methods, 2016, 13(11): 919–922. [11] Li X, Luo O J, Wang P, Zheng M, Wang D, Piecuch E, Zhu J J, Tian S Z, Tang Z, Li G. Long-read ChIA-PET for base-pair-resolution mapping of haplotype-specific chromatin interactions [J]. Nature Protocols, 2017, 12(5): 899–915. [12] Sridhar B, Rivas-Astroza M, Nguyen T C, Chen W, Yan Z, Cao X, Hebert L, Zhong S. Systematic mapping of RNA-chromatin interactions in Vivo [J]. Current Biology, 2017, 27(4): 602–609. [13] Helwak A, Kudla G, Dudnakova T, Tollervey D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding [J]. Cell, 2013, 153(3): 654–665. [14] Keene J D, Komisarow J M, Friedersdorf M B. RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts [J]. Nature Protocols, 2006, 1(1): 302–307. [15] Yin Z, Shujuan X, Hui X U, Lianghu Q U. CLIP: viewing the RNA world from an RNA–protein interactome perspective [J]. Science China, 2015, 58(1): 75–88. [16] Li X, Zhou B, Chen L, Gou L T, Li H, Fu X D. GRID-seq reveals the global RNA-chromatin interactome [J]. Nature Biotechnology, 2017, 35(10): 940–950. [17] Quinodoz S A, Noah O, Barbara T, Ali P, Marten S J, Elizabeth D, Lai M M, Shishkin A A, Prashant B, Yodai T. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus [J]. Cell, 2018, 174(3): 744–757. [18] You Q, Cheng A Y, Gu X, Harada B T, He C. Direct DNA crosslinking with CAP-C uncovers transcription-dependent chromatin organization at high resolution [J]. Nature Biotechnology, 2020, 39(2): 225–235. [19] Zheng M, Tian S Z, Capurso D, Kim M, Maurya R, Lee B, Piecuch E, Gong L, Zhu J J, Li Z, Wong C H, Ngan C Y, Wang P, Ruan X, Wei C L, Ruan Y. Multiplex chromatin interactions with single-molecule precision [J]. Nature, 2019, 566(7745): 558–562. [20] Ouyang W, Xiong D, Li G. Unraveling the 3D Genome Architecture in plants: present and future [J]. Molecular Plant, 2020, 13(12): 1676–1693. [21] Pontvianne F, Liu C. Chromatin domains in space and their functional implications [J]. Current Opinion In Plant Biology, 2020, 54: 1–10. [22] Long Y, Wendel J F, Zhang X, Wang M. Evolutionary insights into the organization of chromatin structure and landscape of transcriptional regulation in plants [J]. Trends in Plant Science, 2024, 29(6): 638–649. [23] Chen C, Wu S, Sun Y, Zhou J, Chen Y, Zhang J, Birchler J A, Han F, Yang N, Su H. Three near-complete genome assemblies reveal substantial centromere dynamics from diploid to tetraploid in Brachypodium genus [J]. Genome Biology, 2024, 25(1): 63. [24] Domb K, Wang N, Hummel G, Liu C. Spatial features and functional implications of plant 3D genome organization [J]. Annual Review of Plant Biology, 2022, 73: 173–200. [25] Wang M J, Lin P C, Ye M, Li Z X, Tu G L. Evolutionary dynamics of 3D genome architecture following polyploidization in cotton [J]. Nature Plants, 2018, 4(2): 90–97. [26] Sun L, Jing Y, Liu X, Li Q, Xue Z, Cheng Z, Wang D, He H, Qian W. Heat stress-induced transposon activation correlates with 3D chromatin organization rearrangement in Arabidopsis [J]. Nature Communications, 2020, 11(1): 1886. [27] Dong P, Tu X, Chu P Y, Lü P, Zhu N, Grierson D, Du B, Li P, Zhong S. 3D Chromatin architecture of large plant genomes determined by local A/B compartments [J]. Molecular Plant, 2017, 10(12): 1497. [28] Zhang Y, Mccord R, Ho Y J, Lajoie B, Hildebrand D, Simon A, Becker M, Alt F, Dekker J. Spatial Organization of the mouse genome and its role in recurrent chromosomal translocations [J]. Cell, 2012, 148(5): 908–921. [29] Ren G, Jin W F, Cui K R, Rodrigez J, Zhang G Q. CTCF-mediated enhancer-promoter interaction is a critical regulator of cell-to-cell variation of gene expression [J]. Molecular Cell, 2017, 67(6): 1049–1058. [30] Ulianov S V, Khrameeva E E, Gavrilov A A, Flyamer I M, Kos P, Mikhaleva E A, Penin A A, Logacheva M D, Imakaev M V, Chertovich A. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains [J]. Genome Research, 2015, 26(1): 70–84. [31] Van Steensel B, Furlong E E M. The role of transcription in shaping the spatial organization of the genome [J]. Nature Reviews Molecular Cell Biology, 2019, 20(6): 327–337. [32] Liao Y, Wang J, Zhu Z, Liu Y, Chen J, Zhou Y, Liu F, Lei J, Gaut B S, Cao B. The 3D architecture of the pepper genome and its relationship to function and evolution [J]. Nature Communications, 2022, 13(1): 3479. [33] Wang M, Li J, Qi Z, Long Y, Pei L, Huang X, Grover C E, Du X, Xia C, Wang P, Liu Z, You J, Tian X, Ma Y, Wang R, Chen X, He X, Fang D D, Sun Y, Tu L, Jin S, Zhu L, Wendel J F, Zhang X. Genomic innovation and regulatory rewiring during evolution of the cotton genus Gossypium [J]. Nature Genetics, 2022, 54(12): 1959–1971. [34] Sun Y, Dong L, Zhang Y, Lin D, Yang F. 3D genome architecture coordinates trans and cis regulation of differentially expressed ear and tassel genes in maize [J]. Genome Biology, 2020, 21(1): 143. [35] Zhou S, Jiang W, Zhao Y, Zhou D X. Single-cell three-dimensional genome structures of rice gametes and unicellular zygotes [J]. Nature Plants, 2019, 5(8): 795–800. [36] Moissiard G, Cokus S J, Cary J, Feng S, Billi A C, Stroud H, Husmann D, Zhan Y, Lajoie B R, Mccord R P. MORC family ATPases required for heterochromatin condensation and gene silencing [J]. American Association for the Advancement of Science, 2012, 336(6087): 1448–1451. [37] Feng S, Cokus S J, Schubert V, Zhai J, Pellegrini M, Jacobsen S E. Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis [J]. Molecular Cell, 2014, 55(5): 694–707. [38] Grob S, Schmid M W, Grossniklaus U. Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila [J]. Molecular Cell, 2014, 55(5): 678–693. [39] Wang C, Liu C, Roqueiro D, Grimm D, Schwab R, Becker C, Lanz C, Weigel D. Genome-wide analysis of local chromatin packing in Arabidopsis thaliana [J]. Genome Research, 2015, 25(2): 246–256. [40] Liu C, Wang C, Wang G, Becker C, Zaidem M, Weigel D. Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution [J]. Genome Research, 2016, 26(8): 1057–1068. [41] Hu B, Wang N, Bi X, Karaaslan E S, Liu C. Plant lamin-like proteins mediate chromatin tethering at the nuclear periphery [J]. Genome biology, 2019, 20(1): 87. [42] Xie T, Zhang F G, Zhang H Y, Wang X T, Wu X M. Biased gene retention during diploidization in Brassica linked to three-dimensional genome organization [J]. Nature Plants, 2019, 5(8): 822–832. [43] Wang M, Tu L, Lin M, Lin Z, Wang P, Yang Q, Ye Z, Shen C, Li J, Zhang L. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication [J]. Nature Genetics, 2017, 49(4): 579. [44] Liu C, Cheng Y J, Wang J W, Weigel D. Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis [J]. Nature plants, 2017, 3(9): 742–748. [45] Dong Q, Li N, Li X, Yuan Z, Xie D, Wang X, Li J, Yu Y, Wang J, Ding B. Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice [J]. Plant Journal, 2018, 94(6): 1141–1156. [46] Dong P, Tu X, Li H, Zhang J, Grierson D, Li P, Zhong S. Tissue-specific Hi-C analyses of rice, foxtail millet and maize suggest non-canonical function of plant chromatin domains [J]. Journal of Integrative Plant Biology, 2020, 62(2): 201–217. [47] Zhou S, Jiang W, Zhao Y, Zhou D X. Single-cell three-dimensional genome structures of rice gametes and unicellular zygotes [J]. Nature Plants, 2019, 5(8): 795–800. [48] Peng Y, Xiong D, Zhao L, Ouyang W, Li X. Chromatin interaction maps reveal genetic regulation for quantitative traits in maize [J]. Nature Communications, 2019, 10(1): 2632. [49] Li E, Liu H, Huang L, Zhang X, Dong X, Song W, Zhao H, Lai J. Long-range interactions between proximal and distal regulatory regions in maize [J]. Nature Communications, 2019, 10(1): 2633. [50] Ricci W A, Lu Z, Ji L, Marand A P, Zhang X. Widespread long-range cis-regulatory elements in the maize genome [J]. Nature Plants, 2019, 5(12): 1–13. [51] Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok S O, Wicker T, Radchuk V, Dockter C, Hedley P E, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang X Q, Zhang Q, Barrero R A, Li L, Taudien S, Groth M, Felder M, Hastie A, ?imková H, Staňková H, Vrána J, Chan S, Mu?oz–Amatriaín M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva–Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, Mccooke J K, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland J A, Bellgard M I, Borisjuk L, Houben A, Dole?el J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer G J, Clark M D, Caccamo M, Schulman A H, Mayer K F X, Platzer M, Close T J, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N. A chromosome conformation capture ordered sequence of the barley genome [J]. Nature, 2017, 544(7651): 427–433. [52] Concia L, Veluchamy A, Ramirezprado J S, Martinramirez A, Huang Y, Perez M, Domenichini S, Rodriguez Granados N Y, Kim S K, Blein T. Wheat chromatin architecture is organized in genome territories and transcription factories [J]. Genome Biology, 2020, 21(1): 104. [53] Louwers M, Bader R, Haring M, Driel R V, Stam L M. Tissue- and Expression level-specific chromatin looping at maize b1 epialleles [J]. Plant Cell, 2009, 21(3): 832–842. [54] Crevillén P, Sonmez C, Wu Z, Dean C. A gene loop containing the floral repressor FLC is disrupted in the early phase of vernalization [J]. The EMBO Journal, 2013, 32(1): 140–148. [55] Liu L, Adrian J, Pankin A, Hu J, Dong X, Von Korff M, Turck F. Induced and natural variation of promoter length modulates the photoperiodic response of FLOWERING LOCUS T [J]. Nature Communications, 2014, 5(1): 4558. [56] Zhao L, Wang S, Cao Z, Ouyang W, Li X. Chromatin loops associated with active genes and heterochromatin shape rice genome architecture for transcriptional regulation [J]. Nature Communications, 2019, 10(1): 3640. [57] Zhao L, Xie L, Zhang Q, Ouyang W, Deng L, Guan P, Ma M, Li Y, Zhang Y, Xiao Q. Integrative analysis of reference epigenomes in 20 rice varieties [J]. Nature Communications, 2020, 11(1): 2658. [58] Sun J, He N, Niu L, Huang Y, Shen W, Zhang Y, Li L, Hou C. Global quantitative mapping of enhancers in rice by STARR-seq [J]. Elsevier, 2019, 17 (2): 140–153. |
| [1] | 王若娴, 朱瑞艳, 开国银, 时 敏. 药用植物PAL基因及其功能研究进展[J]. 亚热带植物科学, 2024, 53(2): 181-190. |
| [2] | 田慧源, 唐博希, 王原秀, 刘 帆, 郭凯阳, 刘国琴. 外源独脚金内酯对烟草腋芽伸长及独脚金内酯代谢途径相关基因表达的影响[J]. 亚热带植物科学, 2023, 52(5): 369-380. |
| [3] | 舒彦淇, 罗家骏, 贾傛吏, 段丽丽, 莫泽君, 刘仁祥. 干旱胁迫对烟草两品种幼苗生理生化特性及NtDEGP5基因表达的影响[J]. 亚热带植物科学, 2023, 52(1): 1-8. |
| [4] | 周俊成, 郭亚利, 陈发元, 张 恒, 朱 迪, 彭三喜, 高焕晔. 烟草根系烟碱代谢关键酶活性与基因表达对复合肥用量及其基肥比例的响应[J]. 亚热带植物科学, 2022, 51(5): 331-339. |
| [5] | 褚宏叶,周帅奇,李春雨,吴 端,叶磊明,谢思琪,赵德刚,沈 奇. 不同光强光质对艾草生长及挥发油成分积累的影响[J]. 亚热带植物科学, 2022, 51(2): 92-101. |
| [6] | 罗岸,左紫怡,焦雄,刘夏. 烟草合子时期表达基因NtZE1的克隆及结构分析[J]. 亚热带植物科学, 2019, 48(02): 103-108. |
| [7] | 周强,韩颖颖. 植物低温应答机制及其泛素化修饰研究进展[J]. , 2017, 46(02): 195-200. |
| [8] | 钟娴,江琳玉,潘东明,潘腾飞,卞阿娜,. 漳州水仙ZDS 基因cDNA克隆及其表达分析[J]. 亚热带植物科学, 2013, 42(02): 97-103. |
| [9] | 范玉琴. 植物中油菜素类固醇信号转导与细胞增殖[J]. 亚热带植物科学, 2007, 36(03): 80-84. |
| [10] | 余光辉,李玲,曾福华. 水分胁迫的基因表达和信号转导[J]. 亚热带植物科学, 2002, 31(01): 57-62. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
闽公网安备 35020602000789号