[1] Holmes F O. Inheritance of resistance to tobacco mosaic disease in the pepper[J]. Phytopathology, 1937,27(5): 637—642.[2] Boukema I W. Allelism of genes controlling resistance to TMV in Capsicum L.[J]. Euphytica, 1980,29(2): 433—439.[3] Cheng N H, Su C L, Carter S A, Nelson R S. Vascular invasion routes and systemic accumulation patterns of tobacco mosaic virus in Nicotiana benthamiana[J]. The Plant Journal, 2000,23(3): 349—362.[4] Lartey R T, Voss T C, Melcher U. Tobamo virus evolution: gene overlaps, recombination, and taxonomic implications[J]. Molecular Biology and Evolution, 1996,13(10): 1327—1338.[5] Kumar S, Udaya Shankar A C, Nayaka S C, Lund O S, Prakash H S. Detection of tobacco mosaic virus and tomato mosaic virus in pepper and tomato by multiplex RT-PCR[J]. Letters in Applied Microbiology, 2011,53(3): 359—363.[6] Boukema I. Resistance to TMV in Capsicum chacoense Hunz. is governed by an allele of the L-locus[J]. Capsicum Newsletter, 1982,3: 49—51.[7] Jones J D, Dangl J L. The plant immune system[J]. Nature, 2006,444(7117): 323—329.[8] Boller T, He S Y. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens[J]. Science, 2009,324(5928): 742.[9] Takken F, Tameling W. To nibble at plant resistance proteins[J]. Science, 2009,24(5928): 744.[10] Dangl J L, Jones J D. Plant pathogens and integrated defence responses to infection[J]. Nature, 2001,411(6839): 826—833.[11] Sawada H, Takeuchi S, Hamada H, Hikichi Y. A new tobamovirus-resistance gene, L1a, of sweet pepper(Capsicum annuum L.)[J]. Engei Gakkai Zasshi, 2004,73(6):552—557.[12] Tomita R, Sekine K T, Mizumoto H, Sakamoto M, Murai J, Kiba A, Hikichi Y, Suzuki K, Kobayashi K. Genetic basis for the hierarchical interaction between Tobamovirus spp. and L resistance gene alleles from different pepper species[J]. Molecular Plant-Microbe Interactions, 2011,24(1): 108—117.[13] Matsumoto K, Sawada H, Matsumoto K, Hamada H, Yoshimoto E, Ito T, Takeuchi S, Tsuda S, Suzuki K, Kobayashi K, Kiba A, Okuno T, Hikichi Y. The coat protein gene of tobamovirus P0 pathotype is a determinant for activation of temperature-insensitive L1a-gene-mediated resistance in Capsicum plants[J]. Archives of Virology, 2008, 153(4): 645—650.[14] Genda Y, Kanda A, Hamada H, SatoY, Ohnishi J, Tsuda S. Two amino acid substitutions in the coat protein of pepper mild mottle virus are responsible for overcoming the L4 gene-mediated resistance in Capsicum spp[J]. Phytopathology, 2007,97(7): 787—793.[15] Lefebvre V, Pflieger S, Thabuis A, Caranta C, Blattes A, Chauvet J C, Daubèze A M, Palloix A . Towards the saturation of the pepper linkage map by alignment of three intraspecific maps including known-function genes[J]. Genome, 2002,45(5): 839—854.[16] Lefebvre V P A, Caranta C, Pochard E. Construction of an intra-specific integrated linkage map of pepper using molecular markers and doubled-haploid progenies[J]. Genome, 1995,38:112—121.[17] Sugita T, Yamaguchi K, Sugimura Y, Nagata R, Yuji K. Development of SCAR markers linked to L3 gene in Capsicum[J]. Breeding Science, 2004,54(2): 111—115.[18] Sugita T, Kinoshita T, Kawano T, Yuji K, Yamaguchi K. Rapid construction of a linkage map using high-efficiency genome scanning/AFLP and RAPD, based on an intraspecific, doubled-haploid population of Capsicum annuum[J]. Breeding Science, 2005,55(3): 287—295.[19] Tomita R, Murai J, Miura Y, Ishihara H, Liu S. Fine mapping and DNA fiber FISH analysis locates the tobamovirus resistance gene L3 of Capsicum chinense in a 400-kb region of R-like genes cluster embedded in highly repetitive sequences[J]. Theoretical and Applied Genetics, 2008,117(7): 1107—1118.[20] Kim H J, Yoo J H, Cho H H, Kim B D. Development of a sequence characteristic amplified region marker linked to the L4 locus conferring broad spectrum resistance to tobamoviruses in pepper plants[J]. Molecules and Cells, 2008,25(2): 205—210.[21] Yang H B, Liu W Y, Kang W H, Jahn M, Kanf B C. Development of SNP markers linked to the L locus in Capsicum spp. by a comparative genetic analysis[J]. Molecular Breeding, 2009,24(4): 433—446.[22] Kim K J, Park C J, An J M, Ham B K, Lee B J, Paek K H. CaAlaAT1 catalyzes the alanine: 2-oxoglutarate aminotransferase reaction during the resistance response against tobacco mosaic virus in hot pepper[J]. Planta, 2005,221(6): 857—867.[23] Park C J, An J M, Shin Y C, Kim K J, Lee B J, Paek K H. Molecular characterization of pepper germin-like protein as the novel PR-16 family of pathogenesis-related proteins isolated during the resistance response to viral and bacterial infection[J]. Planta, 2004,219(5): 797—806.[24] Park C J, Shin R, Park J M, Lee B J, You J S, Paek K H. Induction of pepper cDNA encoding a lipid transfer protein during the resistance response to tobacco mosaic virus[J]. Plant Molecular Biology, 2002,48(3): 243—254.[25] Kim K J, Lim J H, Lee S, Kim Y J, Choi S B, Lee M K, Choi D C, Paek K H. Functional study of Capsicum annuum fatty acid desaturase 1 cDNA clone induced by Tobacco mosaic virus via microarray and virus-induced gene silencing[J]. Biochemical and Biophysical Research Communications, 2007,362(3): 554—461.[26] Shin R, Lee G J, Park C J, Kim T Y, You J S, Nam Y W, Paek K H. Isolation of pepper mRNAs differentially expressed during the hypersensitive response to tobacco mosaic virus and characterization of a proteinase inhibitor gene[J]. Plant Science, 2001,161(4): 727—737.[27] Lim J H, Park C J, Huh S U, Choi L M, Lee G J, Kim Y J, Paek K H. Capsicum annuum WRKYb transcription factor that binds to the CaPR-10 promoter functions as a positive regulator in innate immunity upon TMV infection[J]. Biochemical and Biophysical Research Communications, 2011,411(3): 613—619.[28] Kim K J, Park C J, Ham B K, Choi S B, Lee B J, Paek K H. Induction of a cytosolic pyruvate kinase 1 gene during the resistance response to Tobacco mosaic virus in Capsicum annuum[J]. Plant Cell Reports, 2006,25(4): 359—64.[29] Shin R, An J M, Park C J, Kim Y J, Joo S, Kim W T, Paek K H. Capsicum annuum tobacco mosaic virus-induced clone 1 expression perturbation alters the plant's response to ethylene and interferes with the redox homeostasis[J]. Plant Physiology, 2004,135(1): 561—573.[30] Lee B J, Kim S K, Choi S B, Bae J D, Kim K J, Kim Y J, Paek K H. Pathogen-inducible CaUGT1 is involved in resistance response against TMV infection by controlling salicylic acid accumulation[J]. FEBS Letters, 2009,583(13): 2315—2320.[31] Lee B J, Kwon S J, Kim S K, Kim K J, Park C J, Kim Y J, Park O K, Paek K H. Functional study of hot pepper 26S proteasome subunit RPN7 induced by Tobacco mosaic virus from nuclear proteome analysis[J]. Biochemical and Biophysical Research Communications, 2006,351(2): 405—411.[32] Shang J, Xi D H, Xu F, Wang S D, Cao S, Xu M Y, Zhao P P, Wang J H, Jia S D, Zhang Z W, Yuan S, Lin H H. A broad-spectrum, efficient and nontransgenic approach to control plant viruses by application of salicylic acid and jasmonic acid[J]. Planta, 2011,233(2): 299—308. |