|
[1] Xie C, Li M, Jim C Y, Chen R. Distribution
pattern of endangered Cycas taiwaniana Carruth. in China under climate-change scenarios using the MaxEnt model [J].
Plants, 2025, 14(11): 1600.
[2] 高兆蔚. 福建野生台湾苏铁的保护[J]. 中国野生植物资源, 2003, 22(3):
36–37.
[3] 王定跃. 苏铁科形态结构、系统分类与演化研究[D]. 南京: 南京林业大学硕士学位论文, 2000.
[4] Feng X Y, Wang X H, Chiang Y C, Jian S G, Gong
X. Species delimitation with distinct methods based on molecular data to
elucidate species boundaries in the Cycas
taiwaniana complex (Cycadaceae) [J]. Taxon, 2021, 70(3): 477–491.
[5] 邓朝义. 两种野生苏铁多样性变异研究[J]. 贵州林业科技, 1999, 27(2):
49–50.
[6] 席辉辉, 王祎晴, 潘跃芝, 许恬,
湛青青, 刘健,
冯秀彦, 龚洵.
中国苏铁属植物资源和保护[J]. 生物多样性, 2022, 30(7): 69–81.
[7] Wang X H, Wu W, Jian S G. Transcriptome
analysis of two radiated Cycas species and the subsequent species delimitation of the Cycas taiwaniana complex[J]. Applications in Plant Sciences, 2019,
7(10): e11292.
[8] Wu L X, Xu H Y, Jian S G, Gong X, Feng X Y.
Geographic factors and climatic fluctuation drive the genetic structure and
demographic history of Cycas taiwaniana (Cycadaceae), an endemic endangered species to Hainan Island in China [J].
Ecology and Evolution, 2022, 12(11): e9508.
[9] Wang X H, Li J, Zhang L M, He Z W, Mei Q M,
Gong X, Jian S G. Population differentiation and demographic history of the Cycas taiwaniana Complex (Cycadaceae)
endemic to South China as indicated by DNA sequences and microsatellite markers
[J]. Frontiers in Genetics, 2019, 10: 1238.
[10] 李蒙, 周烨玺, 杨永. 基于最新裸子植物分类系统的中国裸子植物物种编目[J]. 南京林业大学学报(自然科学版), 2024, 48(4):
49–66.
[11] Hossain M K, Hossain M A, Hossain S, Rahman M R, Hossain M I, Nath
S K, Siddiqui M B N. Status and conservation needs of Cycas pectinata Buch.-Ham. in its natural habitat at Baroiyadhala
National Park, Bangladesh [J]. Journal of Threatened Taxa, 2021, 13(8):
19070–19078.
[12] James H E, Forster P I, Lamont R W, Shapcott A. Conservation
genetics and demographic analysis of the endangered cycad species Cycas megacarpa and the impacts of past
habitat fragmentation [J]. Australian Journal of Botany, 2018, 66(2): 173–189.
[13] Wei L, Wang G, Liang H, Pan Y, Chen X, Huang Q. Predicting the
potential suitable habitat for China’s endangered plant Cycas sexseminifera based on the MaxEnt model [J]. Pakistan Journal
of Botany, 2025, 57(1): 163–171.
[14] 杨小波, 陈玉凯, 李东海, 莫燕妮. 海南珍稀保护植物图鉴与分布特征研究[M]. 北京:
科学出版社, 2016.
[15] 谢春平, 吴昌魁, 付桂, 赖水发, 方彦, 王华晨. 五指山地区海南苏铁种群结构特征与动态[J]. 中南林业科技大学学报, 2019, 39(1): 77–85.
[16] 吴二焕, 李东海, 杨小波, 左永令, 杨宁. 海南苏铁野生种群分布特点及种群动态研究[J]. 林业资源管理, 2021(4): 130–137.
[17] 刘念, 谢建光. 台湾苏铁的分布及模式产地[J]. 植物分类学报, 2007, 45(2): 246–250.
[18] 吴二焕, 李东海, 杨小波, 左永令, 李龙, 张培春, 陈琳, 田路嘉, 李晨笛. 海南苏铁种群结构与森林群落郁闭度的关系[J]. 生物多样性, 2021, 29(11):
1461–1469.
[19] 罗文, 李艳朋, 许涵, 秦文豪, 刘大业, 莫世琴. 海南热带雨林国家公园极小种群野生植物坡垒适生群落特征研究[J]. 林业资源管理, 2023(4): 98–106.
[20] 卢俊培, 吴仲民. 海南岛尖峰岭地区土壤类型及其数值分析[J]. 林业科学研究, 1989, 2(6): 517–526.
[21] 张金峰, 葛树森, 梁金花, 李俊清. 长白山阔叶红松林红松种群年龄结构与数量动态特征[J]. 植物生态学报, 2022, 46(6): 667–677.
[22] Yáñez-Espinosa L, Sosa-Sosa F. Population structure of Dioon purpusii rose in Oaxaca, Mexico [J].
Neotropical Biology and Conservation, 2007, 2(1): 46–54.
[23] 郑静楠, 郑进烜, 王勇, 吴富勤, 董磊, 郭汝平, 苏贤海. 滇南苏铁种群结构与分布格局研究[J]. 林业调查规划, 2023, 48(6):
108–113.
[24] 陈晓德. 植物种群与群落结构动态量化分析方法研究[J]. 生态学报, 1998, 18(2):
214–217.
[25] Liu D, Guo Z, Cui X, Fan C. Estimation of the population dynamics
of Taxus cuspidata by using a static
life table for its conservation [J]. Forests, 2023, 14(11): 2194.
[26] 高洪治, 黄欣,
宿昊, 乔鹏飞, 姜在民, 申耀荣, 蔡靖. 秦岭两地区红桦种群结构与动态特征[J]. 北京林业大学学报, 2022, 44(9):
12–20.
[27] 贵新丽, 叶储民, 陈玉凯, 张凯,
吴庭天. 濒危植物油丹种群结构与动态特征[J]. 广西植物, 2025, 45(1):
161–171.
[28] 谢春平, 方彦,
方炎明. 乌冈栎种群数量动态分析[J]. 四川农业大学学报, 2010, 28(4):
438–448.
[29] Karbstein K, Römermann C, Hellwig F, Prinz K. Population size
affected by environmental variability impacts genetics, traits, and plant
performance in Trifolium montanum L [J].
Ecology and Evolution, 2023, 13(8): e10376.
[30] Sandner T M, Gemeinholzer B,
Lemmer J, Matthies D, Ensslin A. Continuous inbreeding affects genetic
variation, phenology, and reproductive strategy in ex situ cultivated Digitalis lutea [J]. American Journal of
Botany, 2022, 109(10): 1545–1559.
[31] Fernández-Palacios J M, Kreft H, Irl S D H, Norder S, Ah-Peng C,
Borges P A V, Burns K C, de Nascimento L, Meyer J-Y, Montes E, Drake D R.
Scientists’ warning–The outstanding biodiversity of islands is in peril [J].
Global Ecology and Conservation, 2021, 31: e01847.
[32] Bähner K W, Tabarelli M, Büdel B, Wirth R. Habitat fragmentation
and forest management alter woody plant communities in a Central European beech
forest landscape [J]. Biodiversity and Conservation, 2020, 29(8): 2729–2747.
[33] Herrera J M, GarcÍA D. Effects of forest fragmentation on seed
dispersal and seedling establishment in ornithochorous trees [J]. Conservation
Biology, 2010, 24(4): 1089–1098.
[34] 胡鑫, 阮志华, 向维. 百色市苏铁属植物资源保护现状及对策[J]. 南方农业, 2023, 17(15):
84–86.
[35] Hall J A, Walter G H. Pollination of the Australian cycad Cycas ophiolitica (Cycadaceae): the
limited role of wind pollination in a cycad with beetle pollinator mutualists,
and its ecological significance [J]. Journal of Tropical Ecology, 2018, 34(2):
121–134.
[36] Vranckx G U Y, Jacquemyn H, Muys B, Honnay O. Meta-analysis of
susceptibility of woody plants to loss of genetic diversity through habitat
fragmentation [J]. Conservation Biology, 2012, 26(2): 228–237.
[37] Aguilar R, Quesada M, Ashworth L, Herrerias-Diego Y, Lobo J.
Genetic consequences of habitat fragmentation in plant populations: susceptible
signals in plant traits and methodological approaches [J]. Molecular Ecology,
2008, 17(24): 5177–5188.
[38] Niinemets Ü. Responses of forest trees to single and multiple
environmental stresses from seedlings to mature plants: past stress history,
stress interactions, tolerance and acclimation [J]. Forest Ecology and
management, 2010, 260(10): 1623–1639.
[39] Prijono A, Suparyanto T, Sudigyo D, Pardamean B. Light intensity
effect on number of seedlings and growth of Gyrinops
versteegii [J]. In IOP Conference Series: Earth and Environmental Science,
2023, 1183(1): 012046.
[40] Gutiérrez-Ortega J S, Pérez-Farrera M A, Sato M P, Matsuo A, Suyama
Y, Vovides A P, Molina-Freaner F, Kajita T, Watano Y. Evolutionary and
ecological trends in the Neotropical cycad genus Dioon (Zamiaceae): An example of success of evolutionary stasis [J].
Ecological Research, 2024, 39(2): 131–158.
[41] Meng Y Y, Xiang W, Wen Y, Huang D L, Cao K F, Zhu S D. Correlations
between leaf economics, mechanical resistance and drought tolerance across 41
cycad species [J]. Annals of Botany, 2022, 130(3): 345–354.
[42] Barlow J, Lennox G D, Ferreira J, Berenguer E, Lees A C, Nally R M,
Thomson J R, Ferraz SFdB, Louzada J, Oliveira V H F, Parry L, Ribeiro de Castro
Solar R, Vieira I C G, Aragão L E O C, Begotti R A, Braga R F, Cardoso T M, de
Oliveira R C, Souza Jr C M, Moura N G, Nunes S S, Siqueira J V, Pardini R,
Silveira J M, Vaz-de-Mello F Z, Veiga R C S, Venturieri A, Gardner T A.
Anthropogenic disturbance in tropical forests can double biodiversity loss from
deforestation [J]. Nature, 2016, 535(7610): 144–147.
[43] Amato G, DeSalle R, Ryder O A, Rosenbaum H C. Conservation genetics
in the age of genomics [M]. New York: Columbia University Press, 2009.
[44] 张沙银婷. 我国野生植物保护中存在的法律问题[J]. 西南林业大学学报(社会科学), 2020, 4(4): 34–36.
[45] 崔雪晴, 侯盟,
刘璐, 李一.
国家公园野生植物监测体系构建—以祁连山国家公园为例[J]. 林草政策研究, 2022, 2(4): 43–49.
|