[1] Ebermeyr E. Die gesamte Lehre der Waldstreu mit Rucksicht auf die chemische statik des Waldbaues[M]. Berlin: J Springer, 1876: 116.[2] Boysen J P. Studier over skovtraernes forhold til lyset Tidsskr[J]. F Skorvaessen, 1910,22: 11-16.[3] Burger H, et al. 12 Fichten im plenterwald mitteil, Schweiz, Anst. Forttl[J]. Versuchsw, 1952,28: 109-156.[4] Kitterge J. Estimation of amount of foliage of trees and shrubs[J]. J Forest, 1944,42: 905-912.[5] Montes N, et al. A non-destructive method for estimating above-ground forest biomass in threatened woodlands[J]. Forest Ecology and Management, 2000,130: 37-46.[6] Nascimento H E M, et al. Total aboveground biomass in central Amazonian rainforests: a landscape-scale study[J]. Forest Ecology and Management, 2002,168: 311-321.[7] Brandeis T J, et al. Development of equations for predicting Puerto Rican subtropical dry forest biomass and volume[J]. Forest Ecology and Management, 2006,233: 133-142.[8] Lehtonen A, et al. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreat forests[J]. Forest Ecology and Management, 2004,188: 211-224.[9] de Wit H A, et al. A carbon budget of forest biomass and soils in southeast Norway calculated using a widely applicable method[J]. Forest Ecology and Management, 2006,255: 15-26.[10] Giese L A B, et al. Biomass and carbon pools of disturbed riparian forests[J]. Forest Ecology and Management, 2003,180: 493-508.[11] Kauffman J B, et al. Biomass dynamics associated with deforestation, fire, and conversion to cattle pasture in a Mexican tropical dry forest[J]. Forest Ecology and Management, 2003,176: 1-12.[12] Dong J, et al. Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks[J]. Remote Sensing of Environment, 2003,84: 393-410.[13] Suganuma H, et al. Stand biomass estimation method by canopy coverage for application to remote sensing in an arid area of Western Australia[J]. Forest Ecology and Management, 2006,222: 75-87.[14] Labrecque S, et al. A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland[J]. Forest Ecology and Management, 2006,266: 129-144.[15] Austin J M, et al. Estimating forest biomass using satellite radar: an exploratory study in a temperate Australian Eucalyptus forest[J]. Forest Ecology and Management, 2003,176: 575-583.[16] Lucas R M, et al. Empirical relationships between AIRSAR backscatter and LiDAR-derived forest biomass, Queensland, Australia[J]. Remote Sensing of Environment, 2006,100: 407-425.[17] Hide P, et al. Exploring LiDAR-RaDAR synergy-predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR[J]. Remote Sensing of Environment, 2007,106: 28-38.[18] 潘维俦,等. 12个不同地域类型杉木林的生物产量和营养元素分布[J]. 中南林业科技, 1979(4): 1-14.[19] 冯宗炜,等. 湖南会同地区马尾松林生物量的测定[J]. 林业科学, 1982,18(2): 127-134.[20] 李文华,等. 长白山主要生态系统生物量生产量的研究[J]. 森林生态系统研究, 1981(试刊): 34-50.[21] 刘世荣. 兴安落叶松人工林群落生物量及净初级生产力的研究[J]. 东北林业大学学报, 1990,18(2): 40-46.[22] 陈灵芝,等. 北京西山人工油松林群落学特征及生物量的研究[J]. 植物生态学与地植物学报, 1984,8(3): 173-181.[23] 党承林,等. 季风长绿阔叶林短刺栲群落的生物量研究[J]. 云南大学学报(自然科学版), 1992,14(2): 95-107.[24] Xue L. Nutrient cycling in a Chinese fir (Cunninghamia lanceloata) stand on a poor site in Yishan, Guangxi[J]. For Ecol Manage, 1996,89: 115-123.[25] 冯宗炜,等. 中国森林生态系统的生物量和生产力[M]. 北京: 科学出版社, 1999.[26] 郑金萍,等. 长白山5种主要森林群落细根现存生物量研究[J]. 北华大学学报, 2004,5(5): 458-461.[27] 彭培好,等. 川西高原光果西南杨人工林生物量及生产力的研究[J]. 林业科技, 2003,28(4): 14-18.[28] 杨存建,等. 不同树种组的热带森林植被生物量与遥感地学数据之间的相关性分析[J].遥感技术与应用, 2004,19(4): 232-235.[29] 邢素丽,等. 基于landsat ETM数据的落叶松林生物量估算模式[J]. 福建林学院学报, 2004,24(2): 153-156.[30] 徐志高,等. 基于GIS的秦岭火地塘森林景观生物量变化趋势分析[J]. 中南林业调查规划, 2003,22(4): 14-17.[31] 郭志华,等. 利用TM数据提取粤西地区的森林生物量[J]. 生态学报, 2002,22(11): 1 832-1 839.[32] 陈利军,等. 中国植被净第一生产力遥感动态监测[J]. 遥感学报, 2002,6(2): 129-135.[33] 国庆喜,等. 基于遥感信息估测森林的生物量[J]. 东北林业大学学报, 2003,3l(2): 13-16.[34] Bown S, et al. Biomass of tropical forests: a new estimate based on forest volumes[J]. Science, 1984,223: 1 290-1 293.[35] 薛立,等. 森林生物量研究综述[J]. 福建林学院学报, 2004,24(3): 283-288.[36] 张慧芳,等. 遥感技术支持下的森林生物量研究进展[J]. 世界林业研究, 2007.20(4): 30-33.[37] 蔡哲,等. 千烟洲试验区几种灌木生物量估算模型的研究[J]. 中南林学院学报, 2006,26(3): 15-23.[38] White J F, et al. Interpretation of the Coefficient in the Allometric Equation[J]. The American Naturalist, 1965,99: 5-18.[39] Woodwell G M, et al. The biota and the world carbon budget[J]. Science, 1978,199: 141-146.[40] 方精云,等. 我国森林植被的生物量和净生产量[J]. 生态学报, 1996,16(5): 497-508.[41] Fang J Y, et al. Forest biomass of China: all estimate based on the biomass-volume relationship[J]. Ecological Application, 1998,8(4): 1 984-1 991.[42] Fang J Y, et al. Forest biomass estimation at regional and global levels, with special reference to China’s forest biomass[J]. Ecol Res., 2001,16: 587-592.[43] Tomppo E, et al. Simultaneous use of Landsat-Tm and IRS-1C WiFS data in estimating large area tree stem volume and aboveground biomass[J]. Remote Sens Environ., 2002,82: 156-171.[44] 张世利. 基于RS,GIS的闽江流域杉木林生物量及碳贮量估测研究[D]. 福州: 福建农林大学, 2008.[45] Gong P, et al. Inverting a canopy reflectance model using an artificial neural network[M]//Engman E T, eds. Remote Sensing for Agriculture, Forestry, and Natural Resources. European Optical Society and The International Society for Optical Engineering, Paris France, 1995: 23-28, 312-322.[46] 宋金玲,等. 像元尺度林地冠层二向反射特性的模拟研究[J]. 光谱学与光谱分析, 2009,29(8): 2 141-2 146.[47] Leroy M, et al. Sun and view angle correction on reflectance derived from NOAA/AVHRR data[J]. IEEE Trans Geosci Remote Sens., 1994,32: 684-697.[48] Hame T, et al. A new methodology for the estimation of biomass of conifer-dominated boreal forest using NOAA AVHRR data[J]. Int J Remote Sens., 1997,18(15): 3 211-3 243.[49] Prince S D, et al. Global primary production: remote sensing approach[J]. J Biogeogr., 1995,22: 815-835.[50] 唐守正,等. 相容性生物量模型的建立及其估计方法研究[J]. 林业科学, 2000,36(1): 19-27. |