[1] Sivankalyani V, Maoz I, Feygenberg O, Maurer D, Alkan N. Chilling stress upregulates α-linolenic acid-oxidation pathway and induces volatiles of C6 and C9 aldehydes in mango fruit[J]. Journal of Agricultural and Food Chemistry, 2017,65(3): 632—638.
[2] Shi Y, Yang S. Cold1: a cold sensor in rice[J]. Science China Life Sciences, 2015,58(4): 409—410.
[3] Orvar B L, Sangwan V, Omann F, Dhindsa R S. Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity[J]. Plant Journal for Cell & Molecular Biology, 2000,23(6): 785—794.
[4] Huner N, ?quist G, Sarhan F. Energy balance and acclimation to light and cold[J]. Trends in Plant Science, 1998,3(6): 224—230.
[5] Ivanov A G, Rosso D, Savitch L V, Stachula P, Rosembert M, Oquist G, Hurry V, Hüner N P. Implications of alternative electron sinks in increased resistance of PSII and PSI photochemistry to high light stress in cold-acclimated Arabidopsis thaliana[J]. Photosynthesis Research, 2012,113(1-3): 191—206.
[6] Tyystj?rvi E. Photoinhibition of photosystem II[J]. International Review of Cell & Molecular Biology, 2012,300: 243—303.
[7] Breusegem F V, Vranová E, Dat J F, Inzé D. The role of active oxygen species in plant signal transduction[J]. Plant Science, 2001,161(3): 405—414.
[8] Kang G Z, Wang Z X, Sun G C. Participation of H2O2 in enhancement of cold chilling by salicylic acid in banana seedlings[J]. Acta Botanica Sinica, 2003,45(5): 567—573.
[9] Ding C K, Wang C Y, Gross K C, Smith D L. Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit[J]. Planta, 2002,214(6): 895—901.
[10] Desikan R, A-H-Mackerness S, Hancock J T, Neill S J. Regulation of the arabidopsis transcriptome by oxidative stress[J]. Plant Physiology, 2001,127(1): 159—172.
[11] Zhu J L, Dong C H, Zhu J K. Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation[J]. Current Opinion in Plant Biology, 2007,10(3): 290—295.
[12] 曹丽霞,马有志,杨俊英. 应答非生物胁迫的植物转录因子[J]. 内蒙古农业科技, 2005(5): 10—14.
[13] Lin X L, Niu D, Hu Z L, Kim D H, Jin Y H, Cai B, Liu P, Miura K, Yun D J, Kim W Y, Lin R, Jin J B. An arabidopsis SUMO E3 ligase, SIZ1, negatively regulates photomorphogenesis by promoting COP1 activity[J]. PloS Genetics, 2016,12(4): e10060166.
[14] Novillo F. Cold acclimation of Arabidopsis thaliana: Affect on plasma membrane lipid composition an defreeze-induced lesions[J]. Plant Biology, 2004(11): 3985—3990.
[15] Liu W, Wang H, Chen Y, Zhu S, Chen M, Lan X, Chen G, Liao Z. Cold stress improves the production of artemisinin depending on the increase in endogenous jasmonate[J]. Biotechnology & Applied Biochemistry, 2016
[16] Jones P G, Inouye M. The cold-shock response-a hot topic[J]. Molecular Microbiology, 1994,11(5): 811—818.
[17] Nakaminami K, Karlson D T, Imai R. Functional conservation of cold shock domains in bacteria and higher plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(26): 10122—10127.
[18] Kim J S, Park S J, Kwak K J, Kim Y O, Kim J Y, Song J, Jang B, Jung C H, Kang H. Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli[J]. Nucleic Acids Research, 2007,35(2): 506—516.
[19] Gong Z, Lee H, Xiong L, Jagendorf A, Stevenson B, Zhu J K. RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002,99(17): 11507—11512.
[20] Gong Z, Dong C H, Lee H, Zhu J, Xiong L, Gong D, Stevenson B, Zhu J K. A dead box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis[J]. Plant Cell, 2005,17(1): 256—267.
[21] Dong C H, Hu X, Tang W, Zheng X, Kim Y S, Lee B H, Zhu J K. A Putative Arabidopsis nucleoporin, at NUP160, is critical for RNA export and required for plant tolerance to cold stress[J]. Molecular and Cellular Biology, 2006,26(24): 9533—9543.
[22] Smalle J, Vierstra R D. The ubiquitin 26S proteasome proteolytic pathway[J]. Annual Review of Plant Biology, 2004,55(1): 555—590
[23] Lyzenga W J, Stone S L. Abiotic stress tolerance mediated by protein ubiquitination[J]. Journal of Experimental Botany, 2012,63(2): 599—616.
[24] Dong C H, Agarwal M, Zhang Y, Xie Q, Zhu J K. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1[J]. Proceedings of the National Academy of Sciences of The United States of America, 2006,103(21): 8281—8286.
[25] Kurepa J, Wang S, Li Y, Smalle J. Proteasome regulation, plant growth and stress tolerance[J]. Plant Signaling and Behavior, 2009,4(10): 924—927.
[26] Zhang Y, Zhao Z, Xue Y. Roles of proteolysis in plant self-incompatibility[J]. Annual Review of Plant Biology, 2009,60: 21—42.
[27] Herrmann J, Lerman L O, Lerman A. Ubiquitin and ubiquitin-like proteins in protein regulation[J]. Circulation Research, 2007,100(9): 1276—1291.
[28] Welchman R L, Gordon C, Mayer R J. Ubiquitin and ubiquitin-like proteins as multifunctional signals[J]. Nature Reviews Molecular Cell Biology, 2005,6(8): 599—609.
[29] Zhu J, Dong C H, Zhu J K. Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation[J]. Current Opinion in Plant Biology, 2007,10(3): 290—295.
[30] Hunter T. Signaling-2000 and beyond[J]. Cell, 2000,100(1): 113—127.
[31] Kim J H, Lee J, Oh B, Kimm K, Koh I. Prediction of phosphorylation sites using SVMs[J]. Bioinformatics, 2004,20(17): 3179—3184.
[32] Chinnusamy V, Ohta M, Kanrar S, Lee B H, Hong X, Agarwal M, Zhu J K. Ice1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes & Development, 2003,17(8): 1043—1054.
[33] Hannoun Z, Greenhough S, Jaffray E, Hay R T, Hay D C. Post-translational modification by SUMO[J]. Toxicology, 2010, 278(3): 288—293.
[34] Ulrich H D. Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest[J]. Trends in Cell Biology, 2005,15(10): 525—532.
[35] Geiss-Friedlander R, Melchior F. Concepts in sumoylation: a decade on[J]. Nature Reviews Molecular Cell Biology, 2007,8(12): 947—956.
[36] 陈军营,阮祥经,杨凤萍,张晓东,陈新建. 转DREB基因烟草悬浮细胞系(BY-2)的建立和几个与抗盐和抗渗透胁迫能力相关指标的检测[J]. 植物生理学报, 2007,43(2): 226—230.
[37] Hong Z, Lakkineni K, Zhang Z, Verma D P. Removal of Feedback Inhibition of delta(1)-pyrro line-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress[J]. Plant Physiology, 2000,122(4): 1129—1136.
[38] Hayat S, Hayat Q, Alyemeni M N, Wani A S, Pichtel J, Ahmad A. Role of proline under changing environments: A review[J]. Plant Signaling and Behavior, 2012,7(11): 1456—1466.
[39] Delauney A J, Hu C A, Kishor P B, Verma D P. Cloning of ornithine delta-aminotransferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia coli and regulation of proline biosynthesis[J]. The Journal of Biological Chemistry, 1993,268(25): 18673—18678.
[40] Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M, Thomashow M F. Low temperature regulation of the arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression[J]. Plant Journal for Cell & Molecular Biology, 1998,16(4): 433—442.
[41] Hare P D, Cress W A, Van Staden J. Dissecting the roles of osmolyte accumulation during stress[J]. Plant Cell and Environment, 1998,21(6): 535—553.
[42] 陈杰忠,徐春香,梁立峰. 低温对香蕉叶片中蛋白质及脯氨酸的影响[J]. 华南农业大学学报, 1999,20(3): 54—58.
[43] 崔文杰,费永俊,向娟. 寒热胁迫下宜昌楠的生理生化响应[J]. 长江大学学报(自然科学版), 2008,5(1): 18—20.
[44] Diaz C, Purdy S, Christ A, Morot-Gaudry J F, Wingler A, Masclaux-Daubresse C. Characterization of markers to determine the extent and variability of leaf senescence in Arabidopsis. A metabolic profiling approach[J]. Plant Physiology, 2005,138(2): 898—908.
[45] 简令成,吴素萱. 植物抗寒性的细胞学研究——小麦越冬过程中细胞结构形态的变化[J]. 植物学报, 1965(1): 1—23.
[46] Zeng Y, Yu J, Cang J, Liu L, Mu Y, Wang J, Zhang D. Detection of sugar accumulation and expression levels of correlative key enzymes in winter wheat (Triticum aestivum) at low temperatures[J]. Bioscience Biotechnology & Biochemistry, 2011,75(4): 681—687.
[47] Turhan E, Ergin S. Soluble sugars and sucrose-metabolizing enzymes related to cold acclimation of sweet cherry cultivars grafted on different rootstocks[J]. Scientific World Journal, 2012(2): 979682.
[48] 余芳,邵兴锋,许凤,王鸿飞. 果实低温贮藏期间糖代谢变化研究进展[J]. 果树学报, 2014,31(1): 125—131.
[49] 陈少裕. 脂膜过氧化对植物细胞的伤害[J]. 植物生理学报, 1991,27(2): 84—90.
[50] 詹福建,巫光宏,黄卓烈,罗焕亮,孟立科. 马占相思树对低温冻害的抗性研究[J]. 林业科学, 2003,39(1): 56—61.
[51] Mccord J M, fridovich I. Speroxide dismutase: an enzymic function for erythrocuprein (hemocuprein)[J]. Journal of Biological Chemistry, 1969,224(22): 6049—6055.
[52] Shalata A, Neumann P M. Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation[J]. Journal of Experimental Botany, 2001,52(364): 2207—2211.
[53] Lowe S W, Cepero E, Evan G. Intrinsic tumour suppression[J]. Nature, 2004,432(7015): 307—315.
[54] Vogelstein B, Lane D P, Levine A J. Surfing the TP53 network[J]. Nature, 2000,408(6810): 307—310.
|