|
[1] Pridgeon A M, Cribb J P, Chase W M, Rasmussen
F. Genera Orchidacearum (Vol. 1):
General Introduction, Apostasioideae, Cypripedioideae [M]. Oxford: Oxford
University Press, 1999.
[2] 中国科学院中国植物志编辑委员会. 中国植物志(第25卷)
[M]. 北京: 科学出版社, 2009: 33–44.
[3] 罗毅波, 贾建生, 王春玲. 初论中国兜兰属植物的保护策略及其潜在资源优势[J]. 生物多样性, 2003, 11(6): 491–498.
[4] Chang W, Zhang S B, Li S Y, Hu H.
Ecophysiological significance of leaf traits in Cypripedium and Paphiopedilum [J]. Physiologia Plantarum, 2011, 141(1): 30–39.
[5] Guan Z J, Zhang S B, Guan K Y, Li S Y, Hu H.
Leaf anatomical structures of Paphiopedilum and Cypripedium and their adaptive
significance [J]. Journal of Plant Research, 2011, 124: 289–298.
[6] Zhang S B, Guan Z J, Sun M, Zhang J J, Cao K
F, Hu H. Evolutionary association of stomatal traits with leaf vein density in Paphiopedilum, Orchidaceae [J]. PLoS
One, 2012, 7(6): e40080.
[7] Istiqomah N, Indriani H, Wijaya Y I F,
Safitri, Yalapuspita D C, Handini E, Diantina S, Aprilianti P, Semiarti E.
Clonal propagation of rare orchid species Paphiopedilum spp. (Orchidaceae) to save Indonesian biodiversity [J]. South African Journal
of Botany, 2024, 172: 779–785.
[8] Zhang, J Z, Lee K P, Liu Y L, Kim C H. Temperature-driven
changes in membrane fluidity differentially impact FILAMENTATION
TEMPERATURE-SENSITIVE H2-mediated photosystem II repair [J]. The
Plant Cell, 2025, 37(1): koae323.
[9] Rath J R, Pandey J, Yadav R M, Zamal M Y,
Ramachandran P, Mekala N R, Allakhverdiev S I, Subramanyam R.
Temperature-induced reversible changes in photosynthesis efficiency and
organization of thylakoid membranes from pea (Pisum sativum) [J]. Plant Physiology and Biochemistry, 2022, 185:
144–154.
[10] Tkemaladze G S, Makhashvili K A. Climate
changes and photosynthesis [J]. Annals of Agrarian Science, 2016, 14(2):
119–126.
[11] Fay M F. Orchid conservation: how can we meet
the challenges in the twenty-first century? [J]. Botanical Studies, 2018, 59:
1–6.
[12] Feng J Q, Huang W, Wang J H, Zhang S B.
Different strategies for photosynthetic regulation under fluctuating light in
two sympatric Paphiopedilum species
[J]. Cells, 2021, 10(6): 1451.
[13] Zhang S B, Yang Y J, Li J W, Qin J, Zhang W,
Huang W, Hu H. Physiological diversity of orchids [J]. Plant Diversity, 2018,
40(4): 196–208.
[14] 刘仲健, 陈心启. 中国兜兰属植物[M]. 北京:
科学出版社, 2009.
[15] Yulia N D. Flowering and fruiting phenology of Paphiopedilum glaucophyllum J J Sm.
var. glaucophyllum [J]. Biodiversitas
Journal of Biological Diversity, 2007, 8(1): 58–62.
[16] 刘仲健, 陈心启, 张建勇, 雷嗣鹏. 麻栗坡兜兰及其近缘植物的分类研究[J]. 植物分类与资源学报, 2002, 24(2): 193–198.
[17] Taticharoen T, Matsumoto S, Chutteang C, Srion
K, Malumpong C, Abdullakasim S. Response and acclimatization of a CAM orchid, Dendrobium sonia ‘Earsakul’ to drought,
heat, and combined drought and heat stress [J]. Scientia Horticulturae, 2023,
309: 111661.
[18] Gao H, Wu F. Physiological and transcriptomic
analysis of tomato in response to sub-optimal temperature stress [J]. Plant
Signaling & Behavior, 2024, 19(1): 2332018.
[19] Goh C H, Ko S M, Koh S, Kim Y J, Bae H J.
Photosynthesis and environments: photoinhibition and repair mechanisms in
plants [J]. Journal of Plant Biology, 2012, 55: 93–101.
[20] Lin G M. Effect of temperature on growth and
flowering of Phalaenopsis white
hybrid [J]. Journal of the Chinese Society for Horticultural Science, 1984, 30:
223–131.
[21] 沈立明, 钟惠,
朱雅婷, 赵亚梅, 吴沙沙, 翟俊文. 温度胁迫下4种广义虾脊兰属植物的光合特性[J]. 福建林学院学报, 2021, 41(1):
60–65.
[22] Chen M, Zhu X Z, Hou M Y, Luo W, Jiang Y W, Yu
Y Y, Wang J J, Yuan H B, Huang X X, Hua J J. Effects of low-temperature stress
on cold resistance biochemical characteristics of Dali and Siqiu tea seedlings
[J]. Horticulturae, 2024, 10(8): 823.
[23] Weng J Y, Rehman A, Li P L, Zhang Y D, Niu Q
L. Physiological and transcriptomic analysis reveals the responses and
difference to high temperature and humidity stress in two melon genotypes [J].
International Journal of Molecular Sciences, 2022, 23(2): 734.
[24] Blanchard M G, Runkle E S. Temperature during
the day, but not during the night, controls flowering of Phalaenopsis orchids [J]. Journal of Experimental Botany, 2006,
57(15): 4043–4049.
[25] Ding Y, Wang X T, Wang F, Shao Y L, Zhang A M,
Chang W. The effects of chilling stress on antioxidant enzymes activities and
proline, malondialdehyde, soluble sugar contents in three Paphiopedilum species [J]. Russian Journal of Plant Physiology,
2023(4): 70.
[26] Yang Y J, Chang W, Huang W, Zhang S B, Hu H.
The effects of chilling-light stress on photosystems I and II in three Paphiopedilum species [J]. Botanical
Studies, 2017, 58: 1–12.
[27] Aazami M A,
Asghari A M, Hassanpouraghdam M B, Ercisli S, Baron M, Sochor J. Low
temperature stress mediates the antioxidants pool and chlorophyll fluorescence
in Vitis vinifera L. cultivars [J].
Plants (Basel, Switzerland), 2021, 10(9): 1877.
[28] 郝平安, 梁芳,
张燕, 程邵丽, 袁秀云, 崔波.
低温胁迫对蝴蝶兰光合及生理特性的影响[J]. 热带作物学报, 2018, 39(10): 8.
[29] 孙璐, 周宇飞, 李丰先, 肖木辑, 陶冶, 许文娟, 黄瑞冬. 盐胁迫对高粱幼苗光合作用和荧光特性的影响[J]. 中国农业科学, 2012, 45(16): 3265–3272.
[30] 艾佳, 温万里, 杨德光, 张倩,
冯冬冬, 王洪宇. 低温胁迫及恢复对玉米光合特性的影响[J]. 玉米科学, 2014, 22(5): 92–97.
|