[1] Bi Y M, Wang R L, Zhu T, Rothstein S J. Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis[J]. BMC Genomics, 2007,8(1): 281.
[2] Gutiérrez R A, Stokes T L, Thum K, Xu X, Obertello M, Katari M S, Tanurdzic M, Dean A, Nero D C, McClung C R, Coruzzi G M. Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1[J]. Proceedings of the National Academy of Sciences, 2008,105(12): 4939—4944.
[3] Jiang L, Liu Y Y, Sun H, Han Y T, Li J L, Li C K, Guo W Z, Meng H Y, Li S, Fan Y L, Zhang C Y. The mitochondrial folylpolyglutamate synthetase gene is required for nitrogen utilization during early seedling development in Arabidopsis[J]. Plant Physiology, 2013,161: 971—989.
[4] Peng M, Hannam C, Gu H, Bi Y M, Rothstein S J. A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation[J]. Plant Journal, 2007,50: 320—337.
[5] Scheible W R, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi M K, Stitt M. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen[J]. Plant Physiology, 2004,136: 2483—2499.
[6] Diaz C, Lema?tre T, Christ A, Azzopardi M, Kato Y, Sato F, Morot-Gaudry J F, Le Dily F, Masclaux-Daubresse C. Nitrogen recycling and remobilization are differentially controlled by leaf senescence and development stage in Arabidopsis under low nitrogen nutrition[J]. Plant Physiology, 2008,147: 1437—1449.
[7] Diaz C, Saliba-Colombani V, Loudet O, Belluomo P, Moreau L, Daniel-Vedele F, Morot-Gaudry J F, Masclaux-Daubresse C. Leaf yellowing and anthocyanin accumulation are two genetically independent strategies in response to nitrogen limitation in Arabidopsis thaliana[J]. Plant Cell Physiology, 2006,47: 74—83.
[8] Ding L, Wang K, Jiang G, Biswas D K, Xu H, Li L F, Li Y H. Effects of nitrogen deficiency on photosynthetic traits of maize hybrids released in different years[J]. Annals of Botany (London), 2005,96(5): 925—930.
[9] Peng M, Hudson D, Schofield A, Tsao R, Yang R, Gu H, Bi Y M, Rothstein S J. Adaptation of Arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis which is controlled by the NLA gene[J]. Journal of Experimental Botany, 2008,59: 2933—2944.
[10] Hanson A D, Gregory J F. Folate biosynthesis, turnover, and transport in plants[J]. Annual Review of Plant Biology, 2011,62: 105—125.
[11] Hanson A D, Roje S. One-carbon metabolism in higher plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2001,52: 119—137.
[12] Ravanel S, Block M A, Rippert P, Jabrin S, Curien G, Rébeillé F, Douce R. Methionine metabolism in plants: chloroplasts are autonomous for de novo methionine synthesis and can import S-adenosylmethionine from the cytosol[J]. Journal of Biological Chemistry, 2004,279: 22548—22557.
[13] Van Wilder V, De Brouwer V, Loizeau K, Gambonnet B, Albrieux C, Van Der Straeten D, Lambert W E, Douce R, Block M A, Rebeille F, Ravanel S. C1 metabolism and chlorophyll synthesis: the Mg-protoporphyrin IX methyltransferase activity is dependent on the folate status[J]. New Phytologist, 2009,182: 137—145.
[14] Zhang H, Deng X, Miki D, Cutler S, La H, Hou Y J, Oh J, Zhu J K. Sulfamethazine suppresses epigenetic silencing in Arabidopsis by impairing folate synthesis[J]. Plant Cell, 2012,24: 1230—1241.
[15] Zhou H R, Zhang F F, Ma Z Y, Huang H W, Jiang L, Cai T, Zhu J K, Zhang C Y, He X J. Folate polyglutamylation is involved in chromatin silencing by maintaining global DNA methylation and histone H3K9 dimethylation in Arabidopsis[J]. Plant Cell, 2013,25: 2545—2559.
[16] Gorelova V, De Lepeleire J, Van Daele J, Pluim D, Me? C, Cuypers A, Leroux O, Rébeillé F, Schellens J H M, Blancquaert D, Stove C P, Van Der Straeten D. Dihydrofolate reductase/thymidylate synthase fine-tunes the folate status and controls redox homeostasis in plants[J]. Plant Cell, 2017,29(11): 2831—2853.
[17] Wei Z, Sun K, Sandoval F J, Cross J M, Gordon C, Kang C, Roje S. Folate polyglutamylation eliminates dependence of activity on enzyme concentration in mitochondrial serine hydroxymethyltransferases from Arabidopsis thaliana[J]. Archives of Biochemistry and Biophysics, 2013,536: 87—96.
[18] Ravanel S, Cherest H, Jabrin S. Tetrahydrofolate biosynthesis in plants: Molecular and functional characterization of dihydrofolate synthetase and three isoforms of folylpolyglutamate synthetase in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences, 2001,98(26): 15360—15365.
[19] Mehrshahi P, Gonzalez-Jorge S, Akhtar T A, Ward J L, Santoyo-Castelazo A, Marcus S E, Lara-Nú?ez A, Ravanel S, Hawkins N D, Beale M H, Barrett D A, Knox J P, Gregory J F 3rd, Hanson A D, Bennett M J, Dellapenna D. Functional analysis of folate polyglutamylation and its essential role in plant metabolism and development[J]. Plant Journal, 2010,64: 267—279.
[20] Srivastava A C, Ramos-Parra P A, Bedair M, Robledo-Herna′ndez A L, Tang Y H, Sumner L W, D?′az de la Garza R I, Blancaflor E B. The folylpolyglutamate synthetase plastidial isoform is required for postembryonic root development in Arabidopsis[J]. Plant Physiology, 2011,155: 1237—1251.
[21] Srivastava A C, Chen F, Ray T, Pattathil S, Pe?a M J, Avci U, Li H, Huhman D V, Backe J, Urbanowicz B, Miller J S, Bedair M, Wyman C E, Sumner L W, York W S, Hahn M G, Dixon R A, Blancaflor E B, Tang Y. Loss of function of folylpolyglutamate synthetase 1 reduces lignin content and improves cell wall digestibility in Arabidopsis[J]. Biotechnology for Biofuels, 2015,8: 224.
[22] Meng H Y, Jiang L, Xu B S, Guo W Z, Li J L, Zhu X Q, Xi X Q, Duan L X, Meng X B, Fan Y L, Zhang C Y. Arabidopsis plastidial folylpolyglutamate synthetase is required for seed reserve accumulation and seedling establishment in darkness[J]. PLoS One, 2014, 9: e101905.
[23] Meng H Y, Xu B S, Zhang C Y, Jiang L. Arabidopsis plastidial folylpolyglutamate synthetase is required for nitrogen metabolism under nitrate-limited condition in darkness[J]. Biochemical and Biophysical Research Communication, 2017,482: 277—281.
[24] 孟红岩. 拟南芥质体定位的叶酰聚谷氨酸合成酶AtDFB生物学功能研究[D]. 北京: 中国农业科学院生物技术研究所博士学位论文, 2014.
[25] 许博思,孟红岩,张春义,姜凌. 拟南芥质体定位的叶酰谷氨酸合成酶基因在低氮条件下的功能分析[J]. 生物技术进展, 2017,7(1): 30—37.
[26] Nawy T, Lee J Y, Colinas J, Wang J Y, Thongrod S C, Malamy J E, Birnbaum K, Benfey P N. Transcriptional profile of the Arabidopsis root quiescent center[J]. Plant Cell, 2005,17(7): 1908—1925. |