[1] Zhao J, Dixon R A. The ‘ins’ and ‘outs’ of flavonoid transport[J]. Trends in Plant Science, 2010,15(2): 72–80.
[2] Qi Y Y, Lou Q, Li H B, Yue J, Liu Y L, Wang Y J. Anatomical and biochemical studies of bicolored flower development in Muscari latifolium[J]. Protoplasma, 2013,250: 1273–1281.
[3] Nishihara M, Nakatsuka T. Genetic engineering of flavonoid pigments to modify flower color in floricultural plants[J]. Biotechnology Letters, 2010,33: 433–441.
[4] Tanaka Y, Brugliera F, Kalc G, Senior M, Dyson B, Nakamura N, Katsumoto Y, Chandler S. Flower color modification by engineering of the flavonoid biosynthetic pathway: Practical perspectives[J]. Bioscience, Biotechnology, and Biochemistry, 2010,74(9): 1760–1769.
[5] Katsumoto Y, Fukuchi- Mizutani M, Fukui Y, Brugliera F, Holton T A, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A, Tao G Q, Nehra N S, Lu C Y, Dyson B K, Tsuda S, Ashikari T, Kusumi T, Mason J G, Tanaka Y. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin[J]. Plant and Cell Physiology, 2007,48(11): 1589–1600.
[6] Nakamura N, Katsumoto Y, Brugliera F, Demelis L, Nakajima D, Suzuki H, Tanaka Y. Flower color modification in Rosa hybrida by expressing the S-adenosylmethionine: Anthocyanin 3′,5′- O-methyltransferase gene from Torenia hybrida[J]. Plant Biotechnology, 2015,32: 109–117.
[7] Noda N, Aida R, Kishimoto S, Ishiguro K, Fukuchi-Mizutani M, Tanaka Y, Ohmiya A. Genetic engineering of novel bluer-colored chrysanthemums produced by accumulation of delphinidin-based anthocyanins[J]. Plant and Cell Physiology, 2013,54(10): 1684–1695.
[8] Noda N, Yoshioka S, Kishimoto S, Nakayama M, Douzono M, Tanaka Y, Aida R. Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism[J]. Science Advances, 2017,3: e1602785.
[9] Shoji K, Momonoi K, Tsuji T. Alternative expression of vacuolar iron transporter and ferritin genes leads to blue/purple coloration of flowers in tulip cv. ‘Murasakizuisho’[J]. Plant and Cell Physiology, 2010,51(2): 215–224.
[10] Verweij W, Spelt C, Di Sansebastiano G P, Vermeer J, Reale L, Ferranti F, Koes R, Quattrocchio F. An H+P-ATPase on the tonoplast determines vacuolar pH and flower colour[J]. Nature Cell Biology, 2008,10(12): 1456–1462.
[11] Liang C Y, Rengasamy K P, Huang L M, Hsu C C, Jeng M F, Chen W H, Chen H H. Assessment of violet-blue color formation in Phalaenopsis orchids[J]. BMC Plant Biology, 2020,20(1): 212.
[12] Fukui Y, Tanaka Y, Kusumi T, Iwashita T, Nomoto K. A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3′,5′-hydroxylase gene[J]. Phytochemistry, 2003,63(1): 15–23.
[13] Shiono M, Matsugaki N, Takeda K. Structure of the blue cornflower pigment[J]. Nature, 2005,436(11): 791.
[14] Okitsu N, Matsui K, Horikawa M, Sugahara K, Tanaka Y. Identification and characterization of novel Nemophila menziesii flavone glucosyltransferases that catalyze biosynthesis of flavone 7,4'-o-diglucoside, a key component of blue metalloanthocyanins[J]. Plant and Cell Physiology, 2018,59(10): 2075–2085.
[15] Gómez C, Conéjéro G, Torregrosa L, Cheynier V, Terrier N, Ageorges A. In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of ANTHOMATE transporters and GST[J]. The Plant Journal, 2011,67(6): 960–970.
[16] Goodman C D, Casati P, Walbot V. A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays[J]. The Plant Cell, 2004,16(7): 1812–1826.
[17] Marrs K, Alfenito M, Lloyd A, Walbot V. A glutathione-S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2[J]. Nature, 1995,375: 397–400.
[18] Mueller L, Goodman C, Silady R, Walbot V. AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein[J]. Plant Physiology, 2000,123: 1561–1570.
[19] Yazaki K. ABC transporters involved in the transport of plant secondary metabolites[J]. FEBS Letters, 2006,580: 1183–1191.
[20] Markham K, Gould K, Winefield C, Mitchell K, Bloor S, Boase M. Anthocyanic vacuolar inclusions—their nature and significance in flower colouration[J]. Phytochemistry, 2000,55: 327–336.
[21] Grotewold E. The genetics and biochemistry of floral pigments[J]. Annual Review of Plant Biology, 2006,57: 761–780.
[22] Figueiredo P, George F, Tatsuzawa F, Toki K, Saito N, Brouillard R. New features of intramolecular copigmentation by acylated anthocyanins[J]. Phytochemistry, 1999,51(1): 125–132.
[23] Goto T, Kondo T. Structure and molecular stacking of anthocyanins—flower color variation[J]. Angewandte Chemie International Edition in English, 1991,30: 17–33.
[24] Yoshida K, Mori M, Kondo T. Blue flower color development by anthocyanins: From chemical structure to cell physiology[J]. Natural Product Reports, 2009,26(7): 884–915.
[25] Shoji K, Miki N, Nakajima N, Momonoi K, Kato C, Yoshida K. Perianth bottom-specific blue color development in tulip cv. Murasakizuisho requires ferric ions[J]. Plant and Cell Physioloy, 2007,48(2): 243–251.
[26] Ishikawa T, Li Z S, Lu Y P, Rea P. The GS-X pump in plant, yeast, and animal cells: Structure, function, and gene expression[J]. Bioscience Reports, 1997,17(2): 189–207.
[27] Honda T, Saito N. Recent progress in the chemistry of polyacylated anthocyanins as flower color pigments[J]. Heterocycles, 2002,56(1–2): 633–692.
[28] Spelt C, Quattrocchio F, Mol J, Koes R. ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms[J]. The Plant Cell, 2002,14(9): 2121–2135.
[29] Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids[J]. The Plant Journal, 2008,54(4): 733–749.
[30] Ishii I, Sakaguchi K, Fujita K, Ozeki Y, Miyahara T. A double knockout mutant of acyl-glucose-dependent anthocyanin glucosyltransferase genes in Delphinium grandiflorum[J]. Journal of Plant Physiology, 2017,216: 74–78.
[31] Mori M, Miki N, Ito D, Kondo T, Yoshida K. Structure of tecophilin, a tri-caffeoylanthocyanin from the blue petals of Tecophilaea cyanocrocus, and the mechanism of blue color development[J]. Tetrahedron, 2014,70(45): 8657–8664.
[32] Tasaki K, Higuchi A, Watanabe A, Sasaki N, Nishihara M. Effects of knocking out three anthocyanin modification genes on the blue pigmentation of gentian flowers[J]. Scientific Reports, 2019,9(1): 15831.
[33] Forkmann G. Flavonoids as flower pigments: The formation of the natural spectrum and its extension by genetic engineering[J]. Plant Breeding, 2006,106: 1–26.
[34] 孙建霞,张燕,胡小,吴继,廖小军. 花色苷的结构稳定性与降解机制研究进展[J]. 中国农业科学, 2009,42(3): 996–1008.
[35] Asen S, Stewart R N, Norris K H. Co-pigmentation of anthocyanins in plant tissues and its effect on color[J]. Phytochemistry, 1972,11(2): 1139–1144.
[36] Hondo T, Yoshida K, Nakagawa A, Kawai T, Tamura H, Goto T. Structural basis of blue-colour development in flower petals from Commelina communis[J]. Nature, 1992,358: 515–518.
[37] Takeda K, Yanagisawa M, Kifune T, Kinoshita T, Timberlake C. A blue pigment complex in flowers of Salvia patens[J]. Phytochemistry, 1994,35: 1167–1169.
[38] Kondo T, Ueda M, Isobe M, Goto T. A new molecular mechanism of blue color development with protocyanin, a supramolecular pigment from cornflower, Centaurea cyanus[J]. Tetrahedron Letters, 1998,39: 8307–8310.
[39] Kondo T, Ueda M, Tamura H, Yoshida K, Isobe M, Goto T. Composition of protocyanin, a self-assembled supramolecular pigment from the blue cornflower, Centaurea cyanus[J]. Angewandte Chemie International Edition, 1994,33: 978–979.
[40] Momonoi K, Yoshida K, Mano S, Takahashi H, Nakamori C, Shoji K, Nitta A, Nishimura M. A vacuolar iron transporter in tulip, Tgvit1, is responsible for blue coloration in petal cells through iron accumulation[J]. The Plant Journal, 2009,59(3): 437–447.
[41] Ma J F, Ryan P R, Delhaize E. Aluminium tolerance in plants and the complexing role of organic acids[J]. Trends in Plant Science, 2001,6(6): 273–278.
[42] Negishi T, Oshima K, Hattori M, Kanai M, Mano S, Nishimura M, Yoshida K. Tonoplast- and plasma membrane-localized aquaporin-family transporters in blue hydrangea sepals of aluminum hyperaccumulating plant[J]. PloS One, 2012,7(8): e43189.
[43] Anaya-Covarrubias J Y, Larranaga N, Almaráz-Abarca N, Escoto-Delgadillo M, Rodríguez-Macías R, Torres-Morán M I. Hydrangea DNA methylation caused by pH substrate changes to modify sepal colour is detected by MSAP and ISSR markers[J]. Agronomy, 2019,9(12).
[44] 龚仲幸,何勇,杨静,宋亚,叶真逍,朱祝军. 外源硫酸铝调节八仙花花青苷组成和含量变化的分子生物学机制[J]. 植物营养与肥料学报, 2017,23(3): 821–826.
[45] Marty F. Plant vacuoles[J]. The Plant Cell, 1999,11: 587–599.
[46] Torskangerpoll K, Andersen ? M. Colour stability of anthocyanins in aqueous solutions at various pH values[J]. Food Chemistry, 2005,89(3): 427–440.
[47] Yoshida K, Kondo T, Okazaki Y, Katou K. Cause of blue petal colour[J]. Nature, 1995,373: 291.
[48] Faraco M, Spelt C, Bliek M, Verweij W, Hoshino A, Espen L, Prinsi B, Jaarsma R, Tarhan E, de Boer Albertus H, Di Sansebastiano G P, Koes R, Quattrocchio Francesca M. Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color[J]. Cell Reports, 2014,6(1): 32–43.
[49] Toshio Y, Fukada Tanaka S, Yoshishige I, Norio S, Yonekura Sakakibara K, Yoshikazu T, Takaaki K, Shigeru I. Genes encoding the vacuolar Na+/H+ exchanger and flower coloration[J]. Plant and Cell Physiology, 2001,(5): 5.
[50] Yoshida K, Kawachi M, Mori M, Maeshima M, Kondo M, Nishimura M, Kondo T. The involvement of tonoplast proton pumps and Na+(K+)/H+ exchangers in the change of petal color during flower opening of morning glory, Ipomoea tricolor cv. Heavenly blue[J]. Plant and Cell Physiology, 2005,46(3): 407–415.
[51] Li Y B, Provenzano S, Bliek M, Spelt C, Appelhagen I, Laura M D F, Verweij W, Schubert A, Sagasser M, Seidel T. Evolution of tonoplast P-ATPase transporters involved in vacuolar acidification[J]. New Phytologist, 2016,211(3): 1092–1107.
[52] Sundaramoorthy J, Park G T, Lee J D, Kim J H, Seo H S, Song J T. A P3A-type ATPase and an R2R3-MYB transcription factor are involved in vacuolar acidification and flower coloration in soybean[J]. Frontiers in Plant Science, 2020,11: 580085.
[53] Houwelingen A, Souer E, Mol J, Koes R. Epigenetic interactions among three dTph1 transposons in two homologous chromosomes activate a new excision-repair mechanism in petunia[J]. The Plant Cell, 1999,11: 1319–1336.
[54] Vlaming P, Schram A, Wiering H. Genes affecting flower colour and pH of flower limb homogenates in Petunia hybrida[J]. Theoretical and Applied Genetics, 1983,66: 271–278.
[55] Faraco M, Li Y, Li S, Spelt C, Di Sansebastiano G P, Reale L, Ferranti F, Verweij W, Koes R, Quattrocchio F M. A tonoplast P3B-ATPase mediates fusion of two types of vacuoles in petal cells[J]. Cell Reports, 2017,19(12): 2413–2422.
[56] 翟宇慧,吕嘉琪,李想,罗小宁,李龙,史倩倩. 欧洲报春细胞液pH对花色形成的作用机理初探[J]. 园艺学报, 2020,47(3): 477–491. |