亚热带植物科学 ›› 2025, Vol. 54 ›› Issue (2): 229-238.DOI: 10.3969/j.issn.1009-7791.2025.02.014
陈嘉忆,黄婷婷,熊龙伟,黎 鹏,郭丽婷,艾 叶*
收稿日期:
2024-08-21
接受日期:
2024-10-22
出版日期:
2025-04-30
发布日期:
2025-06-27
通讯作者:
艾 叶
基金资助:
CHEN Jia-yi, HUANG Ting-ting, XIONG Long-wei, LI Peng, GUO Li-ting, AI Ye*
Received:
2024-08-21
Accepted:
2024-10-22
Online:
2025-04-30
Published:
2025-06-27
Contact:
AI Ye
摘要: TCP转录因子家族含有一个由59个氨基酸组成的碱性螺旋-环-螺旋 (bHLH) 基序,在植物生长发育、形态建成、逆境胁迫响应等方面存在广泛调控作用。兰科植物因其花型奇特、花色多样、叶艺丰富等特点,具有重要的观赏、文化和经济价值。本文概括TCP转录因子的结构以及分类,并对其在兰科植物花、叶等器官形态建成中的功能进行综述,为兰科植物TCP基因功能研究提供理论依据。
中图分类号:
陈嘉忆, 黄婷婷, 熊龙伟, 黎 鹏, 郭丽婷, 艾 叶. 兰科植物TCP转录因子研究进展[J]. 亚热带植物科学, 2025, 54(2): 229-238.
CHEN Jia-yi, HUANG Ting-ting, XIONG Long-wei, LI Peng, GUO Li-ting, AI Ye. Research Progress of TCP Transcription Factors in Orchidaceae[J]. Subtropical Plant Science, 2025, 54(2): 229-238.
[1] Lan J, Qin G. The regulation of CIN-like TCP transcription factors [J]. International Journal of Molecular Sciences, 2020, 21: 4498–4515. [2] Kosugi S, Ohashi Y. PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene [J]. The Plant Cell, 1997, 9(9): 1607–1619. [3] Cubas P, Lauter N, Doebley J, Coen E. The TCP domain: a motif found in proteins regulating plant growth and development [J]. The Plant Journal, 1999, 18(2): 215–222. [4] Martín-Trillo M, Cubas P. TCP genes: a family snapshot ten years later [J]. Trends in Plant Science, 2010, 15(1): 31–39. [5] Floyd S K, Bowman J L. The ancestral developmental tool kit of land plants [J]. International Journal of Plant Sciences, 2007, 168(1): 1–35. [6] Howarth D G, Donoghue M J. Phylogenetic analysis of the “ECE” (CYC/TB1) clade reveals duplications predating the core eudicots [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(24): 9101–9106. [7] Cronk C B Q, Bateman R M, Hawkins J A. Developmental Genetics and Plant Evolution [M]. Florida: CRC Press, 2002: 247–266. [8] Ma J, Liu F, Wang Q, Wang Q L, Wang K B, Jones D C, Zhang B H. Comprehensive analysis of TCP transcription factors and their expression during cotton (Gossypium arboreum) fiber early development [J]. Scientific Reports, 2016, 6(1): 21535–21545. [9] Li S. The Arabidopsis thaliana TCP transcription factors: A broadening horizon beyond development [J]. Plant Signaling & Behavior, 2015, 10(7): e1044192. [10] 王玉红, 徐立华, 李军. 玉米TCP家族基因生物信息学鉴定与分析[J]. 山东农业科学, 2014, 46(4): 1–6. [11] 张延召, 罗新, 李会云, 段旭佳, 张妍. 牡丹TCP家族基因的鉴定与生物信息学分析[J]. 分子植物育种, 2022, 20(1): 31–37. [12] Lin Y F, Chen Y Y, Hsiao Y Y, Shen C Y, Hsu J L. Genome-wide identification and characterization of TCP genes involved in ovule development of Phalaenopsis equestris [J]. Journal of Experimental Botany, 2016, 67(17): 5051–5066. [13] 郭振飞, 朱根发. 重要观赏兰科植物的分子生物学研究进展[J]. 植物学通报, 2004, 4(21): 471–477. [14] Wang H M, Tong C G, Jang S. Current progress in orchid flowering/flower development research [J]. Plant Signaling and Behavior, 2017, 12(5): e1322245. [15] Kosugi S, Ohashi Y. DNA binding and dimerization specificity and potential targets for the TCP protein family [J]. The Plant Journal, 2002, 30(3): 337–348. [16] Danisman S. TCP transcription factors at the interface between environmental challenges and the plant’s growth responses [J]. Frontiers in Plant Science, 2016, 7: 1930. [17] 刘洋, 张慧, 辛大伟, 王琳琳, 张丽伟, 刘春燕, 陈庆山, 胡国华. 大豆TCP转录因子家族结构域分析及功能预测[J]. 大豆科学, 2012, 31(5): 707–713. [18] Li C, Potuschak T, Colón–Carmona A, Gutiérrez R A, Doerner P. Arabidopsis TCP20 links regulation of growth and cell division control pathways [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36): 12978–12983. [19] Kosugi S, Ohashi Y. PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell. 1997 Sep;9(9):1607-19. [20] Lopez J A, Sun Y, Blair P B, Mukhtar M S. TCP three-way handshake: linking developmental processes with plant immunity [J]. Trends in Plant Science, 2015, 20(4): 238–245. [21] 罗茂, 张志明, 高健, 曾兴, 潘光堂. miR319在植物器官发育中的调控作用[J]. 遗传, 2011, 33(11): 1203–1211. [22] Koyama T, Furutani M, Tasaka M, Masaru O T. TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis [J]. The Plant Cell, 2007, 19(2): 473–484. [23] Nath U, Crawford B C W, Carpenter R, Coen E. Genetic control of surface curvature [J]. Science, 2003, 299(5611): 1404–1407. [24] Doebley j, Stec A, Hubbard L. The evolution of apical dominance in maize [J]. Nature, 1997, 6624(386): 485–488. [25] Costa M M, Fox S, Hanna A I, Baxter C, Coen E. Evolution of regulatory interactions controlling floral asymmetry [J]. Development, 2005, 132(22): 5093–5101. [26] Hoshino Y, Igarashi T, Ohshima M, Shinoda K, Murata N, Kanno A, Nakano M. Characterization of cycloidea-like genes in controlling floral zygomorphy in the monocotyledon Alstroemeria [J]. Scientia Horticulturae, 2014, 169: 6–13. [27] Yokoyama J, Fukuda T, Maki M. Molecular evolution of cycloidea-like genes in Fabaceae [J]. Journal of Molecular Evolution, 2003, 57(5): 588–597. [28] Finlayson S A. Arabidopsis TEOSINTE BRANCHED1–LIKE1 regulates axillary bud outgrowth and is homologous to monocot TEOSINTE BRANCHED1 [J]. Plant and Cell Physiology, 2007, 48(5): 667–677. [29] Carpenter D L R, Vincent C, Copsey L, Coen E. Origin of floral asymmetry in Antirrhinum [J]. Nature, 1996. 383(6603): 794–799. [30] Preston J C, Hileman L C. Developmental genetics of floral symmetry evolution [J]. Trends in Plant Science, 2009, 14(3): 147–154. [31] Endress P K. The immense diversity of floral monosymmetry and asymmetry across angiosperms [J]. The Botanical Review, 2012, 78(4): 345–397. [32] 廖雪竹. 兰科花卉TCP基因生物信息学分析及蝴蝶兰CYC–like基因克隆与功能研究[D]. 南京: 南京农业大学硕士学位论文, 2017. [33] 李玉霞, 杨玉霞, 孙玉英, 刘松, 王广东. 蕙兰CfCIN基因克隆及其功能分析[J]. 西北植物学报, 2016, 36(12): 2354–2360. [34] Huang Y, Zhao X, Zheng Q, He X, Zhang M M, Ke S, Li Y, Zhang C, Ahmad S, Lan S. Genome-wide identification of TCP gene family in Dendrobium and their expression patterns in Dendrobium chrysotoxum [J]. International Journal of Molecular Sciences, 2023, 24: 14320. [35] Wei X, Yuan M, Zheng B Q, Zhou L, Wang Y. Genome-wide identification and characterization of TCP gene family in Dendrobium nobile and their role in perianth development [J]. Frontiers in Plant Science, 2024, 15:1352119. [36] Paolo S D, Gaudio L, Aceto S. Analysis of the TCP genes expressed in the inflorescence of the orchid Orchis italica[J]. Scientific Reports, 2015, 5: 16265–16276. [37] Liu D K, Zhang C L, Zhao X W, Ke S J, Li Y Y, Zhang D Y, Zheng Q Y, Li M H, Lan S R, Liu Z J. Genome-wide analysis of the TCP gene family and their expression pattern in Cymbidium goeringii [J]. Frontiers in Plant Science, 2022, 10: 1068969. [38] Ahmad S, Lu C, Gao J, Wei Y, Xie Q, Jin J, Zhu G, Yang F. The integrated mRNA and miRNA approach reveals potential regulators of flowering time in Arundina graminifolia [J]. International Journal of Molecular Sciences, 2023, 24: 1699. [39] 李婧玉. 蝴蝶兰与文心兰TCP基因的克隆及表达分析[D]. 广州: 华南农业大学硕士学位论文, 2011. [40] Bartlett M E, Specht C D. Changes in expression pattern of the teosinte branched1-like genes in the Zingiberales provide a mechanism for evolutionary shifts in symmetry across the order [J]. American Journal of Botany, 2011, 98(2): 227–243. [41] Preston J C, Hileman L C. Parallel evolution of TCP and B-class genes in Commelinaceae flower bilateral symmetry [J]. EvoDevo, 2012, 3: 6. [42] Broholm S K, Tahtiharju S, Laitinen R A E, Albert V A, Teeri T H, Elomaa P. A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(26): 9117–9122. [43] Busch A, Zachgo S. Control of corolla monosymmetry in the Brassicaceae Iberis amara [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(42): 16714–16719. [44] Chapman M A, Leebens-Mack J H, Burke J M. Positive selection and expression divergence following gene duplication in the sunflower CYCLOIDEA gene family [J]. Molecular Biology and Evolution, 2008, 25(7): 1260–1273. [45] 谢磊, 王姗珊, 胡博文, 熊兴耀, 陈己任. 基于CRISPR/Cas9技术的月季TCP9基因转化拟南芥[J]. 分子植物育种, 2017, 15(3): 928–933. [46] Gao Q, Tao J H, Yan D, Wang Y Z, Li Z Y. Expression differentiation of CYC-like floral symmetry genes correlated with their protein sequence divergence in Chirita heterotricha (Gesneriaceae) [J]. Development Genes and Evolution, 2008, 218(7): 341–351. [47] Zhang M, Qin S, Yan J, Li L, Xu M, Liu Y, Zhang W. Genome-wide identification and analysis of TCP family genes in Medicago sativa reveal their critical roles in Na+/K+ homeostasis [J]. BMC Plant Biology, 2023, 23(1): 301. [48] 齐香玉, 李新茹, 陈双双. 茉莉花TCP基因家族全基因组鉴定及其表达分析[J]. 华北农学报, 2024, 39(1): 63–71. [49] Mondragón-Palomino M, Theissen G. Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes [J]. Annals of Botany, 2009, 104(3): 583–594. [50] Mondragón-Palomino M, Theissen G. MADS about the evolution of orchid flowers [J]. Trends in Plant Science, 2008, 13(2): 51–59. [51] Wu Y J, Chen S Y, Hsu F C. PeCIN8 expression correlates with flower size and resistance to yellow leaf disease in Phalaenopsis orchids [J]. BMC Plant Biology, 2023, 23: 545. [52] Huang Y, Zhao X, Zheng Q, He X, Zhang M M, Ke S, Li Y, Zhang C, Ahmad S, Lan S, Liu Z J. Genome-wide identification of TCP gene family in Dendrobium and their expression patterns in Dendrobium chrysotoxum [J]. International Journal of Molecular Sciences, 2023, 24(18): 14320. [53] Koyama T, Ohme-takagi M, Sato F. Generation of serrated and wavy petals by inhibition of the activity of TCP transcription factors in Arabidopsis thaliana [J]. Plant Signaling & Behavior, 2011, 6(5): 697–699. [54] Tanaka Y, Yamamura T, Oshima Y, Mitsuda N, Koyama T, Ohme-takagi M, Terakawa T. Creating ruffled flower petals in Cyclamen persicum by expression of the chimeric cyclamen TCP repressor [J]. Plant Biotechnology, 2011, 28(2): 141–147. [55] Narumi T, Aida R, Koyama T, Yamaguchi H, Sasaki K, Shikata M, Nakayama M, OHME-TAKAGI M, Ohtsubo N. Arabidopsis chimeric TCP3 repressor produces novel floral traits in Torenia fournieri and Chrysanthemum morifolium [J]. Plant Biotechnology, 2011, 28(2): 131–140. [56] Zhang L, Cheng L, Yang D N, Wang Y H, Yang Y P, Sun X D. Genome–wide analysis of the TCP transcription factor genes in Dendrobium catenatum Lindl [J]. International Journal of Molecular Sciences, 2021, 22: 10269. [57] Ingram G C, Waites R. Keeping it together: co–ordinating plant growth [J]. Current Opinion in Plant Biology, 2006, 9(1): 12–20. [58] Mondragón-Palomino M, Trontin C. High time for a roll call: gene duplication and phylogenetic relationships of TCP-like genes in monocots [J]. Annals of Botany, 2011, 107(9): 1533–1544. [59] Han X , Yu H, Yuan R, Yang Y, An F, Qin G. Arabidopsis transcription factor TCP5 controls plant thermomorphogenesis by positively regulating PIF4 activity [J]. iScience, 2019, 15: 611–622. [60] Sarvepalli K, Nath U. Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation [J]. The Plant Journal, 2011, 67(4): 595–607. [61] Nag A, King S, Jack T. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(52): 22534–22539. [62] Huang T, Irish V F. Temporal control of plant organ growth by TCP transcription factors [J]. Current Biology, 2015, 25(13): 1765–1770. [63] Madrigal Y, Alzate J F, Pabón-Mora N. Evolution and expression patterns of TCP genes in Asparagales [J]. Frontiers in Plant Science, 2017, 8: 9. [64] Das Gupta M, Aggarwal P, Nath U. CINCINNATA in Antirrhinum majus directly modulates genes involved in cytokinin and auxin signaling [J]. New Phytologist, 2014, 204(4): 901–912. [65] Hervé C, Dabos P, Bardet C, Jauneau A, Auriac M C, Ramboer A, Lacout F, Tremousaygue D. In vivo interference with AtTCP20 function induces severe plant growth alterations and deregulates the expression of many genes important for development [J]. Plant Physiology, 2009, 149(3): 1462–1477. [66] Vadde B V L, Challa K R, Sunkara P, Hegde A S, Nath U. The TCP4 transcription factor directly activates TRICHOMELESS1 and 2 and suppresses trichome initiation [J]. Plant Physiology, 2019, 181(4): 1587–1599. [67] Rakhmetullina A K, Pyrkova A Y, Goncharova A V, Ivashchenkoa A T. Predicting characteristics of the potentially binding sites for miRNA in the mRNA of the TCP transcription factor genes of plants [J]. Russian Journal of Plant Physiology, 2020, 67(4): 606–617. [68] ?lhan E, Büyük ?, ?nal B. Transcriptome-Scale characterization of salt responsive bean TCP transcription factors [J]. Gene, 2018, 642: 64–73. [69] Yang F X, Zhu G F, Wang Z, Liu H L, Xu Q Q, Huang D, Zhao C Y. Integrated mRNA and microRNA transcriptome variations in the multi-tepal mutant provide insights into the floral patterning of the orchid Cymbidium goeringii [J]. BMC Genomics, 2017, 18(1): 367. [70] Meng Y J, Yu D L, Xue J, Lu J J, Feng S G, Shen C J, Wang H Z. A transcriptome-wide, organ specific regulatory map of Dendrobium officinale, an important traditional Chinese orchid herb [J]. Scientific Reports, 2016, 6(1): 18864. [71] Liu J, Cheng X, Liu P, Li D, Chen T, Gu X F, Sun J Q, Michael L. MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis [J]. PLoS Genetics, 2017, 13(5): e1006833. [72] Kubota A, Ito S, Shim J S, Johnson R S, Song Y H, Breton G, Goralogia G S, Kwon M S, Cintrón D L, Koyama T, Ohme-takagi M, Pruneda–paz J L, KAY S A, Maccoss M J, Imaizumi T. TCP4-dependent induction of CONSTANS transcription requires GIGANTEA in photoperiodic flowering in Arabidopsis [J]. PLoS Genetics, 2017, 13(6): e1006856. [73] Ahmad S, Peng D H, Zhou Y Z, Zhao K. The genetic and hormonal inducers of continuous flowering in orchids: an emerging view [J]. Cells, 2022, 11(4): 657. [74] Endress P K. Evolution of floral symmetry [J]. Current Opinion in Plant Biology, 2001, 4(1): 86–91. [75] Sargent R D. Floral symmetry affects speciation rates in angiosperms [J]. Proceedings of the Royal Society of London. Series B: Biological Sciences, 2004, 271(1539): 603–608. [76] Yuan Z, Gao S, Xue D W, Luo D, Li L T, Ding S Y, Yao X, Wilson Z A, Qian Q, Zhang D B. RETARDED PALEA1 controls palea development and floral zygomorphy in rice [J]. Plant Physiology, 2009, 149(1): 235–244. [77] Xu Y F, Teo L L, Zhou J, Kumar P P, Yu H. Floral organ identity genes in the orchid Dendrobium crumenatum [J]. The Plant Journal, 2006, 46(1): 54–68. [78] Liang Y X, Chen Z Q, Wang C, Tang H W, Yang H G. The development of neurobehavioral toxicology in China: The 1994 H?nninen Lecture [J]. Environmental Research, 1997, 73(1–2): 9–17. [79] Rudall P J. Unique floral structures and iterative evolutionary themes in Asparagales: insights from a morphological cladistic analysis [J]. The Botanical Review, 2002, 68(4): 488–509. [80] Koyama T, Mitsuda N, Seki M, Shinozaki K, Masaru O T. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis [J]. The Plant Cell, 2010, 22(11): 3574–3588. [81] Du J, Hu S, Yu Q, Wang C, Yang Y, Hang S, Yang Y, Sun X. Genome-Wide identification and characterization of BrrTCP transcription factors in Brassica rapa ssp. rapa [J]. Frontiers in Plant Science, 2017, 8: 1588. [82] Whitney H M, Glover B J. Morphology and development of floral features recognised by pollinators [J]. Arthropod-Plant Interactions, 2007, 1(3): 147–158. [83] Hileman L C, Cubas P. An expanded evolutionary role for flower symmetry genes [J]. Journal of Biology (London, England), 2009, 8(10): 90. [84] Li S, Zachgo S. TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana [J]. The Plant Journal, 2013, 76(6): 901–913. [85] Zhao Y F, Broholm S K, Wang F, Rijpkema A S, Lan T Y, Albert V A, Teeri T H, Elomaa P. TCP and MADS-box transcription factor networks regulate heteromorphic flower type identity in Gerbera hybrida [J]. Plant Physiology, 2020, 184(3): 1455–1468. [86] Li Y, Li L, Yang J, Niu Z, Liu W, Lin Y, Xue Q, Ding X. Genome-wide identification and analysis of TCP gene family among three Dendrobium species [J]. Plants (Basel), 2023, 12(18): 3201. [87] Zhao H, Liao H, Li S, Zhang R, Dai J, Ma P, Wang T, Wang M, Yuan Y, Fu X, Cheng J, Duan X, Xie Y, Zhang P, Kong H, Shan H. Delphinieae flowers originated from the rewiring of interactions between duplicated and diversified floral organ identity and symmetry genes [J]. The Plant Cell. 2023, 15, 35(3): 994–1012. [88] Li D B, Zhang H Y, Mou M H, Chen Y L, Xiang S Y, Chen L G, Yu D Q. Arabidopsis Class II TCP transcription factors integrate with the FT–FD module to control flowering [J]. Plant Physiology, 2019, 181(1): 97–111. [89] Balsem?o-pires E, Andrade L R, Sachetto-Martins G. Functional study of TCP23 in Arabidopsis thaliana during plant development [J]. Plant Physiology and Biochemistry, 2013, 67: 120–125. |
[1] | 康 宁, 刘彩琴, 张 粤, 刘 欣, 陶 君, 陈 羽, 张运玲, 黄运梅, 李廷章, 李玉玲, 唐光大. 广东象头山国家级自然保护区兰科植物垂直分布格局[J]. 亚热带植物科学, 2022, 51(4): 306-312. |
[2] | 徐国良,赖辉莲. 江西省2种兰科植物分布新记录[J]. , 2015, 44(03): 253-254. |
[3] | 赵珊珊,赵强民,严丹峰,王亚玲. 不同条件下木兰科植物种子的保质期研究[J]. 亚热带植物科学, 2013, 42(04): 319-324. |
[4] | 丁峰,彭宏祥,李鸿莉,朱建华,秦献泉,沈庆庆,何新华. 植物AP1基因研究进展[J]. 亚热带植物科学, 2011, 40(01): 85-89. |
[5] | 臧敏,李永飞,邱筱兰,齐丽萍. 江西三清山兰科植物区系分析[J]. 亚热带植物科学, 2010, 39(01): 57-62,70. |
[6] | 黄暖爱,黄绵佳. 兰科植物保育研究概况[J]. 亚热带植物科学, 2007, 36(04): 72-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||