亚热带植物科学 ›› 2025, Vol. 54 ›› Issue (6): 698-713.DOI: 10.3969/j.issn.1009-7791.2025.06.012
吴美芳1,刘昕宇2,李惠华1,叶秋萍1,王 杰1,陈良华1*
收稿日期:2025-05-17
接受日期:2025-07-15
出版日期:2025-12-31
发布日期:2025-12-31
通讯作者:
陈良华
基金资助:厦门市自然科学基金面上项目(3502Z202373082);厦门市技术开发(委托)合同(2025350204001074);厦门市科技计划项目(3502Z20222004)
WU Mei-fang1, LIU Xin-yu2, LI Hui-hua1, YE Qiu-ping1, WANG Jie1, CHEN Liang-hua1*
Received:2025-05-17
Accepted:2025-07-15
Online:2025-12-31
Published:2025-12-31
Contact:
CHEN Liang-hua
摘要: 橘皮黄酮类成分可从芸香科植物橘Citrus reticulata及其栽培变种的成熟果皮中提取而来。橘皮黄酮类成分主要包括川陈皮素、橘皮素、橙皮苷、柚皮素等,具有抗炎、抗血栓、抗肿瘤、抗过敏以及心血管保护等药理活性。本文综述橘皮黄酮类成分对人体心脏保护作用及其机制的研究进展,围绕心肌缺血再灌注、心肌肥大、心律失常、心肌纤维化以及其他疾病或药物引起的心脏损伤等方面进行探讨,并展望其未来发展。
中图分类号:
吴美芳, 刘昕宇, 李惠华, 叶秋萍, 王 杰, 陈良华. 橘皮黄酮对心脏的保护作用及其机制研究进展[J]. 亚热带植物科学, 2025, 54(6): 698-713.
WU Mei-fang, LIU Xin-yu, LI Hui-hua, YE Qiu-ping, WANG Jie, CHEN Liang-hua. Research Progress on the Cardioprotective Effects and Mechanisms of Flavonoids in Citrus Peel[J]. Subtropical Plant Science, 2025, 54(6): 698-713.
| [1] Wang X, Su Z, Li X, Chen J, Li G, Shan Y, Pan Z, Fu F. Targeted/untargeted metabolomics and antioxidant properties distinguish Citrus reticulata 'Chachi' from Citrus reticulata Blanco [J]. Food Chemistry, 2025, 462:140806. [2] Sharma P, Dhiman P, Singh D. Dietary flavonoids-rich Citrus reticulata peel extract interacts with CREB signaling to suppress seizures and linked neurobehavioral impairments in a kindling mouse model [J]. Nutritional Neuroscience, 2023, 26(7): 582–593. [3] 张赟赟, 巫凯, 杨海船, 陈锋, 何春欢, 李嘉. 关于陈皮的成分和应用研究进展[J]. 大众科技, 2023, 25(7): 69–73. [4] 徐健, 曾万祥, 王晓东, 陈亮, 刘卉, 陈斌, 钱雪, 王琦, 黄晓德, 曹鹏. 陈皮的化学成分与药理学作用研究进展[J]. 中国野生植物资源, 2022, 41(10): 72–76. [5] 杨静帆, 李敏艳, 秦燕勤, 李建生. 川陈皮素的药理活性研究进展[J]. 中医学报, 2023, 38(4): 719–725. [6] Rufino A, Costa V, Carvalho F, Fernandes E. Flavonoids as antiobesity agents: A review [J]. Medicinal Research Reviews, 2021, 41(1): 556–585. [7] 刘阳, 臧文静, 梁潇, 王岳, 李鲜, 孙崇德. 23个柑橘品种果实油胞层类黄酮组分鉴定与抗氧化活性研究[J]. 中国食品学报, 2022, 22(12): 234–246. [8] M’Hiri N, Ioannou I, Ghoul M, Mihoubi B N. Phytochemical characteristics of citrus peel and effect of conventional and nonconventional processing on phenolic compounds: A review [J]. Food Reviews International, 2017, 33(6): 587–619. [9] Fontana G, Bruno M, Sottile F, Badalamenti N. The chemistry and the anti–inflammatory activity of polymethoxy flavonoids from Citrus genus [J]. Antioxidants (Basel), 2022, 12(1): 23. [10] 王海帆, 王鹏, 王福, 陈林, 陈鸿平, 胡媛, 刘友平. 不同栽培品种柑橘橘皮黄酮类成分含量及抗氧化活性比较研究[J]. 天然产物研究与开发, 2024, 36(1): 117–124. [11] Wang S, Yang C, Tu H, Zhou J, Liu X, Cheng Y, Luo J, Deng X, Zhang H, Xu J. Characterization and metabolic diversity of flavonoids in citrus species [J]. Scientific Reports, 2017, 7(1): 10549. [12] 陈玉婷, 傅曼琴, 吴继军, 余元善, 温靖, 徐玉娟. 不同生长时期茶枝柑果实品质分析[J]. 食品与发酵工业, 2023, 49(10): 251–258. [13] Schulze C J, Wang W, Suarez-Pinzon W L, Sawicka J, Sawicki G, Schulz R. Imbalance between tissue inhibitor of metalloproteinase-4 and matrix metalloproteinases during acute myocardial correction of myoctardial ischemia-reperfusion injury [J]. Circulation, 2003, 107(19): 2487–92. [14] Zhang B F, Jiang H, Chen J, Guo X, Li Y, Hu Q, Yang S. Nobiletin ameliorates myocardial ischemia and reperfusion injury by attenuating endoplasmic reticulum stress-associated apoptosis through regulation of the PI3K/AKT signal pathway [J]. International Immunopharmacology, 2019, 73: 98–107. [15] Mao Q, Liang X, Wu Y, Lu Y. Nobiletin protects against myocardial injury and myocardial apoptosis following coronary microembolization via activating PI3K/Akt pathway in rats[J]. Naunyn-Schmiedeberg's Archives of Pharmacology, 2019, 392(9): 1121–1130. [16] 余继全, 阮鹏, 葛建军. 川陈皮素通过Rnd3调控核因子κB信号在心肌梗死中的作用机制研究[J]. 中国医院用药评价与分析, 2022, 22(3): 332–337. [17] Huang Q, Tian L, Zhang Y, Qiu Z, Lei S, Xia Z Y. Nobiletin alleviates myocardial ischemia-reperfusion injury via ferroptosis in rats with type-2 diabetes mellitus [J]. Biomed Pharmacother, 2023, 163: 114795. [18] Fu J, Niu H, Gao G, Wang L, Yu K, Guo R, Zhang J. Naringenin promotes angiogenesis of ischemic myocardium after myocardial infarction through miR-223-3p/IGF1R axis [J]. Regenerative Therapy, 2022, 21: 362–371. [19] Jin X, Jin L, Wu B, Xu D. Naringenin protects myocardial ischemia/reperfusion injury by regulating miR-24-3p to inhibit cell death-inducing p53 target 1 expression [J]. General physiology and biophysics, 2024, 43(1): 13–23. [20] Li F, Zhan Z, Qian J, Cao C, Yao W, Wang N. Naringin attenuates rat myocardial ischemia/reperfusion injury via PI3K/Akt pathway-mediated inhibition of apoptosis, oxidative stress and autophagy [J]. Experimental and Therapeutic Medicine, 2021, 22(2): 811. [21] Guo X, Ji Q, Wu M, Ma W. Naringin attenuates acute myocardial ischemia-reperfusion injury via miR-126/GSK-3β/ β-catenin signaling pathway [J]. Acta Cirurgica Brasileira, 2022, 37(1): e370102. [22] Liu W, Cheng L, Li X, Zhao L, Hu X, Ma Z. Short-term pretreatment of naringin isolated from Citrus wilsonii Tanaka attenuates rat myocardial ischemia/reperfusion injury [J]. Naunyn-schmiedebergs Archives of Pharmacology, 2022, 395(9): 1047–1059. [23] Shackebaei D, Hesari M, Ramezani–Aliakbari S, Pashaei M, Yarmohammadi F, Ramezani-Aliakbari F. Cardioprotective effect of naringin against the ischemia/reperfusion injury of aged rats [J]. Naunyn-schmiedebergs Archives of Pharmacology, 2024, 397(2): 1209–1218. [24] 褚智君, 张少华, 任冬飞, 谢琪, 周腾腾, 张红梅, 吴香婷. 橙皮苷干预心肌梗死进展的机制研究[J]. 现代中西医结合杂志, 2023, 32(13): 1800–1805. [25] Li A, Zhang X, Luo Q. Neohesperidin alleviated pathological damage and immunological imbalance in rat myocardial ischemia-reperfusion injury via inactivation of JNK and NF-κB p65 [J]. Bioscience Biotechnologyand Biochemistry, 2021, 85(2): 251–261. [26] Liu P, Li J, Liu M, Zhang M, Xue Y, Zhang Y, Han X, Jing X, Chu L. Hesperetin modulates the Sirt1/Nrf2 signaling pathway in counteracting myocardial ischemia through suppression of oxidative stress, inflammation, and apoptosis [J]. Biomedicine & Pharmacotherapy, 2021, 139: 111552. [27] 姚琪, 李佳寅. 基于PI3K/Akt信号通路探讨橘皮素对双氧水致心肌细胞氧化损伤的保护作用[J]. 中国中医药科技, 2023, 30(3): 434–437. [28] Lim S H. Cardioprotective effects of nobiletin and tangeretin on ischemia/reperfusion–induced myocardial injury in rats [J]. Journal of the Korean Society of Food Science and Nutrition, 2019, 48(5): 524–532. [29] Chen S, Sun T, Li X. Nobiletin alleviates the hypoxia/ reoxygenation-induced damage in myocardial cells by modulating the miR-433/SIRT1 axis [J]. Journal of Food Biochemistry, 2021, 45(8): e13844. [30] Xu S, Wu B, Zhong B, Lin L, Ding Y, Jin X, Huang Z, Lin M, Wu H, Xu D. Naringenin alleviates myocardial ischemia/ reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)/System xc-/glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis [J]. Bioengineered, 2021, 12(2): 10924–10934. [31] Tang J Y, Jin P, He Q, Lu L H, Ma J P, Gao W L, Bai H P, Yang J. Naringenin ameliorates hypoxia/reoxygenation-induced endoplasmic reticulum stress-mediated apoptosis in H9C2 myocardial cells: involvement in ATF6, IRE1α and PERK signaling activation [J]. Molecular and Cellular Biochemistry, 2017, 424: 111–122. [32] Yin Q, Wang S, Yang J, Fan C, Yu Y, Li J, Mei F, Zhang S, Xi R, Zhang X. Nobiletin attenuates monocrotaline-induced pulmonary arterial hypertension through PI3K/Akt/STAT3 pathway [J]. Journal of Pharmacy and Pharmacology, 2023, 75(8): 1100–1110. [33] 谭敏, 王宪庆, 陈靖, 曹浪, 沈华, 谭旭, 王磊. 川陈皮素调控PI3K/AKT信号通路抑制心肌肥大的机制研究[J]. 现代中药研究与实践, 2023, 37(6): 34–38. [34] Xiong X, Kiperman T, Li W, Dhawan S, Lee J, Yechoor V, M A K. The clock-modulatory activity of nobiletin suppresses adipogenesis via wnt signaling [J]. Endocrinology. 2023, 164(8): bqad096. [35] Velusamy P, Mohan T, Ravi D B, Kishore Kumar S N, Srinivasan A, Chakrapani L N, Singh A, Varadharaj S, Kalaiselvi P. Targeting the Nrf2/ARE signalling pathway to mitigate isoproterenol-induced cardiac hypertrophy: Plausible role of hesperetin in redox homeostasis [J]. Oxidative Medicine and Cellular Longevity, 2020: 9568278. [36] Liu B, Qiu B, Zhang S. Effect of hesperetin on isoprenaline- induced hypertrophy of H9C2 cardiomyocytes [J]. Cellular and Molecular Biology, 2022, 68(7): 85–89. [37] Bhargava P, Verma V K, Malik S, Khan S I, Bhatia J, Arya D S. Hesperidin regresses cardiac hypertrophy by virtue of PPAR-γ agonistic, anti-inflammatory, antiapoptotic, and antioxidant properties [J]. Journal of Biochemical and Molecular Toxicology, 2019, 33(5): e22283. [38] Zhang J, Fu X, Yang L, Wen H, Zhang L, Liu F, Lou Y, Yang Q, Ding Y. Neohesperidin inhibits cardiac remodeling induced by Ang II in vivo and in vitro [J]. Biomed Pharmacother, 2020, 129: 110364. [39] Jiang S, Huang C, Wang S, Huang B, Wu D, Zheng G, Cai Y. Network pharmacology-based strategy for predicting therapy targets of citri reticulatae pericarpium on myocardial hypertrophy [J]. BioMed Research International, 2022. DOI: 10.1155/2022/4293265. [40] Li Y, He B, Zhang C, He Y, Xia T, Zeng C. Naringenin Attenuates isoprenaline-induced cardiac hypertrophy by suppressing oxidative stress through the AMPK/NOX2/MAPK signaling pathway [J]. Nutrients, 2023, 15(6): 1340. [41] Liu Y, Li Q, Shao C, She Y, Zhou H, Guo Y, An H, Wang T, Yang J, Wan H. Exploring the potential mechanisms of guanxinshutong capsules in treating pathological cardiac hypertrophy based on network pharmacology [J]. Computer- Aided Drug Design, and Animal Experiments. ACS Omega, 2024, 9(16): 18083–18098. [42] Zhang J, Qiu H, Huang J, Ding S, Huang B, Wu Q, Jiang Q. Naringenin exhibits the protective effect on cardiac hypertrophy via EETs-PPARs activation in streptozocin- induced diabetic mice [J]. Biochemicaland Biophysical Research Communications, 2018, 502(1): 55–61. [43] You Q, Wu Z, Wu B, Liu C, Huang R, Yang L, Guo R, Wu K, Chen J. Naringin protects cardiomyocytes against hyperglycemia- induced injuries in vitro and in vivo [J]. The Journal of Endocrinology, 2016, 230(2): 197–214. [44] Zhang N, Yang Z, Xiang S Z, Jin Y G, Wei W Y, Bian Z Y, Deng W, Tang Q Z. Nobiletin attenuates cardiac dysfunction, oxidative stress, and inflammatory in streptozotocin: induced diabetic cardiomyopathy [J]. Molecular and Cellular Biochemistry, 2016, 417: 87–96. [45] 刘晓萍, 赖香茂, 欧阳资章, 江晟, 张莹. 川陈皮素抑制高糖诱导的乳鼠心肌细胞肥大[J]. 中国临床药理学与治疗学, 2021, 26(7): 753–759. [46] Parkar N, Bhatt L K, Addepalli V. Efficacy of nobiletin, a citrus flavonoid, in the treatment of the cardiovascular dysfunction of diabetes in rats [J]. Food &Function, 2016, 7(7): 3121–3129. [47] Simão M F, Rios M N , Leiria T L L, Kruse M L, Pires L M, Santanna R T, Lima G G. Electrophysiological studies and radiofrequency ablations in children and adolescents with arrhythmia [J]. Arquivos Brasileiros de Cardiologia, 2015, 104(1): 53–7. [48] Gu Y, Wang J, Li M, Xiang J, Xu Z. Inhibitory effects of nobiletin on voltage-gated Na+ channelin rat ventricular myocytes based on electrophysiological analysis and molecular docking method [J]. International Journal of Molecular Sciences, 2022, 23(23): 15175. [49] 顾有为. 川陈皮素对乌头碱诱发大鼠心律失常的药效学作用及其机制研究[D]. 扬州: 扬州大学硕士学位论文, 2023. [50] Alvarez-Collazo J, López-Requena A, Galán L, Talavera A, Alvarez J l, Talavera K. The citrus flavanone hesperetin preferentially inhibits slow-inactivating currents of a long QT syndrome type 3 syndrome Na+ channel mutation [J]. British Journal of Pharmacology, 2019, 176(8): 1090–1105. [51] Alvarez-Collazo J, López-Requena A, Alvarez J L, Talavera K. The citrus flavonoid hesperetin has an inadequate anti-arrhythmic profile in theΔKPQ NaV1.5 mutant of the long QT type 3 syndrome [J]. Biomolecules, 2020, 10(6): 952. [52] Li S H, Ma G L, Zhang S L, Yang Y Y, Liu H F, Luo A, Wen J, Cao Z Z, Jia Y Z. Naringin exerts antiarrhythmic effects by inhibiting channel currents in mouse cardiomyocytes [J]. Journal of Electrocardiology, 2023, 80: 69–80. [53] Uryash A, Mijares A, Flores V, Adams J A, Lopez J R. Effects of naringin on cardiomyocytes from a rodent model of type 2 diabetes [J]. Frontiers in Pharmacology, 2021,12: 719268. DOI: 10.3389/fphar.2021.719268. [54] Lai Y J, Chang S H, Tung Y C, Chang G J, Almeida C, Chen W J, Yeh Y H, Tsai F C. Naringin activates semaphorin 3A to ameliorate TGF-β-induced endothelial-to-mesenchymal transition related to atrial fibrillation [J]. Journal of Cellular Physiology, 2024, 239(5): e31248. [55] Rockey D C, Bell P D, Hill J A. Fibrosis––a common pathway to organ injury and failure [J]. The New England Journal of Medicine, 2015, 372(12): 1138–1149. [56] Yu X H, Wang Y F, Dai F Y, Zhao J H, Li P. The protective effects of berberine and hesperidin on inflammatory factor-stimulating cardiac fibroblasts [J]. European Review for Medical &Pharmacological Sciences, 2019, 23(12): 5468–5476. [57] 杨彬, 陈哲, 全虹翰, 高海英, 朱青. 橙皮苷对DOCA/Salt高血压大鼠心肾组织损害的保护作用[J]. 中国药理学通报, 2023, 39(9): 1705–1710. [58] Wang B, Li L, Jin P, Li M, Li J. Hesperetin protects against inflammatory response and cardiac fibrosis in postmyocardial infarction mice by inhibiting nuclear factorκB signaling pathway [J]. Experimental and Therapeutic Medicine, 2017, 14(3): 2255–2260. [59] Che Y, Tang Q. Nobiletin attenuates cardiac dysfunction, cardiac fibrosis in obesity induced cardiomyopathy [J]. Journal of the American College of Cardiology, 2016, 68(16): C18–C18. [60] Liu Z, Gao Z, Zeng L, Liang Z, Zheng D, Wu X. Nobiletin ameliorates cardiac impairment and alleviates cardiac remodeling after acute myocardial infarction in rats via JNK regulation [J]. Pharmacology Research & Perspectives, 2021, 9(2): e00728. [61] Zhou Y, Yin T, Shi M, Chen M, Wu X, Wang K, Cheang I, Li Y, Shang H, Zhang H, Li X. Nobiletin attenuates pathological cardiac remodeling after myocardial infarction via activating PPARγ and PGC1α [J]. PPAR Research, 2021. DOI: 10.1155/2021/9947656. [62] Lampanichakul M, Poasakate A, Potue P, Rattanakanokchai S, Maneesai P, Prachaney P, Settheetham-Ishida W, Pakdeechote P. Nobiletin resolves left ventricular and renal changes in 2K-1C hypertensive rats [J]. Scientific Reports, 2022,12(1): 9289. [63] Shiroorkar P N, Afzal O, Kazmi I, Al-Abbasi F A, Altamimi A S A, Gubbiyappa K S, Sreeharsha N. Cardioprotective effect of tangeretin by inhibiting PTEN/AKT/mTOR Axis in experimental sepsis-induced myocardial dysfunction [J]. Molecules, 2020, 25(23): 5622. [64] Pan J, Meng L, Li R, Wang Z, Yuan W, Li Y, Chen L, Shen Q, Liu W, Zhu L. Naringenin protects against septic cardiomyopathy in mice by targeting HIF-1α [J]. Biochemical and Biophysical Research Communications, 2024, 704: 149613. [65] Ramprasath T, Senthamizharasi M, Vasudevan V, Sasikumar S, Yuvaraj S, Selvam G S. Naringenin confers protection against oxidative stress through upregulation of Nrf2 target genes in cardiomyoblast cells [J]. Journal of Physiology and Biochemistry, 2014, 70: 407–415. [66] Eldourghamy A, Hossam T, Hussein M A, Abdel-Aziz A, El-Masry S A. Naringenin suppresses NLRP3 inflammasome activation via the mRNA-208a signaling pathway in isoproterenol-induced myocardial infarction [J]. Asian Pacific Journal of Tropical Biomedicine, 2023, 13(10): 20231004. [67] Alam F, Kharya A K, Srivastav R K, Akhtar J, Khan Mi, Ahmad M. Synergetic effect of lupeol and naringin against bile duct ligation induced cardiac injury in rats via modulating nitrite level (eNos) and NF-kB /p65 expression [J]. Drug Research, 2023, 73(1): 23–29. [68] Jaiswal S, Anjum M M, Thakur S, Pandey P, Arya D K, Kumar A, Kaushik A S, Rajinikanth P S. Evaluation of cardioprotective effect of naringin loaded lignin nanoparticles against isoproterenol induced myocardial infarction [J]. Journal of Drug Delivery Science and Technology, 2023, 89: 105076. [69] Yang Z, Liu Y, DengW, Dai J, Li F, Yuan Y, Wu Q, Zhou H, Bian Z, Tang Q. Hesperetin attenuates mitochondria-dependent apoptosis in lipopolysaccharide-induced H9C2 cardiomyocytes [J]. Molecular Medicine Reports, 2014, 9(5): 1941–1946. [70] Rezaee R, Sheidary A, Jangjoo S, Ekhtiary S, Bagheri S, Kohkan Z, Dadres M, Oana Docea A, Tsarouhas K, Sarigiannis D, Karakitsios S, Tsatsakis A, Kovatsi L, Hashemzaei M. Cardioprotective effects of hesperidin on carbon monoxide poisoned in rats [J]. Drug and Chemical Toxicology, 2021, 44(6): 668–673. [71] Alharbi F K, Alshehri Z S, Alshehri F F, Alhajlah S, Khalifa H A, Dahran N, Ghonimi W A M. The role of hesperidin as a cardioprotective strategy against doxorubicin-induced cardiotoxicity: The antioxidant, anti-inflammatory, antiapoptotic, and cytoprotective potentials [J]. Open Veterinary Journal, 2023, 13(12): 1718–1728. [72] Jia Y, Guo H, Cheng X, Zhang Y, Si M, Shi J, MA D. Hesperidin protects against cisplatin-induced cardiotoxicity in mice by regulating the p62-Keap1-Nrf2 pathway [J]. Food & Function, 2022, 13(7): 4205–4215. [73] Farooq J, Sultana R, James J P,Fathima C Z, Almutairy A F, Hussain A S M. Efficacy of thymoquinone and hesperidin in attenuating cardiotoxicity from 5-fluorouracil: Insights from in vivo and in silico studies [J].Toxics, 2024, 12(9): 8. [74] 张若冰. 橘皮素对顺铂致心脏毒性的保护作用与机制[D]. 长春: 吉林农业大学硕士学位论文, 2022. [75] Nicolaides A N, Kakkos S K, Baekgaard N, Comerota A, de Maeseneer M, Eklof B, Belcaro G, Guex J, Mansilha A, Gloviczki P, Partsch H, Lurie F, Rabe E. Reduction of leg lymphedema and improvement of venous symptoms in chronic venous diSEase with flavonoids (RELIEF): A multicountry study [J]. Angiology, 2018, 69(6): 483–490. [76] Navajas-Porras B, Bosch-Sierra N, Valle C G, Salazar J D, Marqués-Cardete R, Sáez G, Morillas C, Bañuls C. Effects of a flavonoid-enriched orange juice on antioxidant capacity, lipid profile, and inflammation in obese patients: A randomized placebo-controlled trial [J]. Food Research International, 2025, 217: 116759. [77] Salden B N, Troost F J, de Groot E, Stevens Y R, Garcés-Rimón M, Possemiers S, Winkens B, Masclee AA. Randomized clinical trial on the efficacy of hesperidin 2S on validated cardiovascular biomarkers in healthy overweight individuals [J]. The American Journal of Clinical Nutrition, 2016, 104(6): 1523–1533. [78] Haidari F, Heybar H, Jalali M T, Ahmadi Engali K, Helli B, Shirbeigi E. Hesperidin supplementation modulates inflammatory responses following myocardial infarction [J]. Journal of the American College of Nutrition, 2015, 34(3): 205–211. [79] Saini R K, Ranjit A, Sharma K, Prasad P, Shang X, Gowda K G M, Keum Y S. Bioactive compounds of citrus fruits: A review of composition and health benefits of carotenoids, flavonoids, limonoids, and terpenes [J]. Antioxidants, 2022, 11(2): 239. |
| [1] | 王晓芹, 罗 康, 唐玉超. 基于文献计量的唐松草属植物研究现状及热点分析[J]. 亚热带植物科学, 2025, 54(4): 477-486. |
| [2] | 刘黎卿,郭迟鸣,施建羽,郭 莺,孟红岩,曾新萍. 铁皮石斛活性成分生物合成与调控多组学研究进展[J]. 亚热带植物科学, 2024, 53(4): 381-388. |
| [3] | 曾文杰,肖自勇,金晨钟,柏连阳,彭琼. 二氯喹啉酸对稗草生长发育及生长素含量的影响[J]. 亚热带植物科学, 2019, 48(01): 1-6. |
| [4] | 周丽英,付忠,卜璐璐,杨春雷,高婷,杨正安. 植物光破坏防御机制研究进展[J]. , 2016, 45(03): 290-294. |
| [5] | 何恩铭,沈瑞池,林志楷,管齐扬. 大豆异黄酮抗肿瘤效应研究进展(综述)[J]. 亚热带植物科学, 2013, 42(04): 356-360. |
| [6] | 林志楷,刘黎卿,陈菲. 井冈霉素研究概况(综述)[J]. 亚热带植物科学, 2013, 42(03): 279-282. |
| [7] | 杨泉光,宋洪涛,杨海娟,张洪. 苏铁类植物传粉生物学研究进展(综述)[J]. 亚热带植物科学, 2012, 41(03): 83-88. |
| [8] | 郭莺,阮妙鸿,刘佳,杨川毓,张木清. 甘蔗花叶病毒P1基因的原核表达及其抗体制备[J]. 亚热带植物科学, 2009, 38(04): 1-4. |
| [9] | 张雪芹,欧阳海波. 盐胁迫下甜菜碱的生物合成及植物耐盐的分子机制[J]. 亚热带植物科学, 2009, 38(03): 73-78. |
| [10] | 单家林,肖倩莼,余卓桐,黄武仁,郑学勤,杨公正. 低聚糖素诱导橡胶树抗白粉病作用机制初探[J]. 亚热带植物科学, 2005, 34(01): 31-32,24. |
| [11] | 韩丽娟,胡玉熹,林金星,王献溥. 水松生物学特性及保护[J]. 亚热带植物科学, 1997, 26(01): 43-47. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
闽公网安备 35020602000789号