[1] Güsewell S N. P ratios in terrestrial plants: variation and functional significance [J]. New Phytologist, 2004, 164: 243–266.
[2] Bucher S F, Auerswald K, Grün-Wenzel C, Higgins I S, Jorge J G, R?mermann C. Stomatal traits relate to habitat preferences of herbaceous species in a temperate climate [J]. Flora, 2017, 229: 107–115.
[3] Brown J H, Whitham T G, Ernest S K M, Gehring C A. Complex species interactions and the dynamics of ecological systems: long-term experiments [J]. Science, 2001, 293: 643–650.
[4] Vendramini F, Diaz S, Gurvich D E, Wilson P J, Thompson K, Hodgson J G. Leaf traits as indicators of resource–use strategy in floras with succulent species [J]. New Phytologist, 2002, 154: 147–157.
[5] 周海燕, 王金牛, 付秀琴, 向双, 王彦星, 高景, 吴彦. 不同光环境对中国南方草地3种灌木表型可塑性的影响[J]. 应用与环境生物学报, 2014, 20(6): 962–970.
[6] Louault F, Pillar V D, Aufrère J, Garnier E, Soussana J F. Plant traits and functional types in response to reduced disturbance in a semi-natural grassland [J]. Journal of Vegetation Science, 2005, 16: 151–160.
[7] Blonder B, Baldwin B G, Enquist B J, Robichaux R H. Variation and macroevolution in leaf functional traits in the Hawaiian silversword alliance (Asteraceae) [J]. Journal of Ecology, 2016, 104: 219–228.
[8] Nishida K, Hanba Y T. Photosynthetic response of four fern species from different habitats to drought stress: relationship between morpho-anatomical and physiological traits [J]. Photosynthetica, 2017, 55: 689–697.
[9] Roybal C M, Butterfield B J. Species-specific trait-environment relationships among populations of widespread grass species [J]. Oecologia, 2019, 189: 1017–1026.
[10] Wright I J, Reich P B, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats [J]. Functional Ecology, 2001, 15: 423–434.
[11] Lauranse M, Martin O, Nicolini E, Vincent G. Functional traits and their plasticity predict tropical trees regeneration niche even among species with intermediate light requirements [J]. Journal of Ecology, 2012, 100: 1440–1452.
[12] 熊慧, 马承恩, 李乐, 曾辉, 郭大立. 不同生境条件下蕨类和被子植物的气孔形态特征及其对光强变化的响应[J]. 植物生态学报, 2014, 38(8): 868–877.
[13] Amitrano C, Arena C, Cirillo V, Pascale S D, Micco V D. Leaf morpho-anatomical traits in Vigna radiata L. affect plant photosynthetic acclimation to changing vapor pressure deficit [J]. Environmental and Experimental Botany, 2021, 186: 104453.
[14] Bonal D, Born C, Brechet C, Coste S, Marcon E, Roggy J C, Guehl J M. The successional status of tropical rainforest tree species is associated with differences in leaf carbon isotope discrimination and functional traits [J]. Annals of Forest Science, 2007, 64: 169–176.
[15] Callaway R M, Pennings S C, Richards C L. Phenotypic plasticity and interactions among plants [J]. Ecology, 2003, 84: 1115–1128.
[16] Théry M. Forest light and its influence on habitat selection [J]. Plant Ecology, 2001, 153: 251–261.
[17] Valladares F, Sanchez-Gomez D, Zavala M A. Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications [J]. Journal of Ecology, 2006, 94: 1103–1116.
[18] 周天阳, 高景, 贺俊东, 薛晶月, 孙建, 王金牛, 徐波, 谢雨, 吴彦. 高山草地环山样带异质坡向上3种植物的株高、叶片性状与生物量分配[J]. 应用与环境生物学报, 2018, 24(3): 425–433.
[19] Cope O L, Lindroth R L, Helm A, Keefover-Ring K, Kruger E L. Trait plasticity and trade-offs shape intra-specific variation in competitive response in a foundation tree species [J]. New Phytologist, 2021, 230: 710–719.
[20] 潘为高, 李勇, 朱小勇, 朱意麟, 李耀华, 罗彭. 剑叶耳草挥发油的GC-MS分析[J]. 中国实验方剂学杂志, 2012, 18(15): 130–134.
[21] Luo P, Su J, Zhu Y, Wei J, Wei W, Pan W. A new anthraquinone and eight constituents from Hedyotis caudatifolia Merr. et Metcalf: isolation, purification and structural identification [J]. Natural Product Research, 2016, 30: 2190–2196.
[22] 陈明龙, 王奎武, 范新凤. 剑叶耳草中的1个新咖啡酸苷化学成分及其抗肿瘤活性[J]. 中草药, 2019, 50(1): 25–29.
[23] 赫尚丽, 朱丽艳, 黎国强, 李小双, 李华, 闫颜. 广西大瑶山国家级自然保护区珍稀濒危及国家保护植物调查分析[J]. 林业建设, 2012, (1): 44–46.
[24] 陈碧珍, 王磊, 孙灿岳. 大瑶山国家级自然保护区野生木本观赏植物资源调查[J]. 中国野生植物资源, 2021, 40(8): 61–67.
[25] 严理, 王磊, 罗保庭, 周晓果, 朱宏光, 尤业明, 李晓琼, 温远光. 大瑶山国家级自然保护区中山针阔混交林的植物多样性[J]. 广西科学, 2015, 22(6): 600–605+611.
[26] Vile D, Garnier é, Shipley B, Laurent G, Navas M-L, Roumet C, Lavorel S, Díaz S, Hodgson J G, Lloret F, Midgley G F, Poorter H, Rutherford M C, Wilson P J, Wright I J. Specific leaf area and dry matter conent estimate thinckness in Laminar leaves [J]. Annals of Botany, 2005, 96: 1129–1136.
[27] Coste S, Baraloto C, Leroy C, éric M, Renaud A, Richardson A D, Roggy J C, Schimann H, Uddling J, Hérault B. Assessing foliar chlorophyll contents with the SPAD-502 chlorophyll meter: a calibration test with thirteen tree species of tropical rainforest in French Guiana [J]. Annals of Forest Science, 2010, 67: 607–607.
[28] Holland N, Richardson A D. Stomatal length correlates with elevation of growth in four temperate species [J]. Journal of Sustainable Forestry, 2009, 28: 63–73.
[29] 郭美玲, 姚步青, 石国玺, 王芳萍, 王文颖, 马真, 张中华, 周华坤. 高寒草甸植物叶片碳含量及其可塑性与系统发育的关系[J]. 生态学杂志, 2018, 37(6): 1841–1848.
[30] Markesteijn L, Poorter L, Bongers F. Light-dependent leaf trait variation in 43 tropical dry forest tree species [J]. American Journal of Botany, 2007, 94: 515–525.
[31] Johnson G N, Rumsey F J, Headley A D, Sheffield E. Adaptations to extreme low light in the fern Trichomanes speciosum [J]. New Phytologist, 2000, 148: 423–431.
[32] Feng J Q, Wang J H, Zhang S B. Leaf physiological and anatomical responses of two sympatric Paphiopedilum species to temperature [J]. Plant Diversity, 2022, 44: 101–108.
[33] Muir C D, Hangarter R P, Moyle L C, Davis P A. Morphological and anatomical determinants of mesophyll conductance in wild relatives of tomato (Solanum sect. Lycopersicon, sect. Lycopersicoides; Solanaceae) [J]. Plant, Cell & Environment, 2014, 37: 1415–1426.
[34] Schuster A C, Burghardt M, Alfarhan A, Bueno A, Hedrich R, Leide J, Thomas J, Riederer M. Effectiveness of cuticular transpiration barriers in a desert plant at controlling water loss at high temperatures [J]. AoB Plants, 2016, 8: plw027.
[35] Carins Murphy M R, Jordan G J, Brodribb T J. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata [J]. Plant, Cell & Environment, 2014, 37: 124–131.
[36] 高冠龙, 张小由, 常宗强, 鱼腾飞, 赵虹. 植物气孔导度的环境影响模拟及其尺度扩展[J]. 生态学报, 2016, 36(6): 1491–1500.
[37] 普晓妍, 王鹏程, 李苏, 鲁志云, 宋钰. 亚热带森林附生植物叶片气孔特征及其可塑性对光照变化的响应[J]. 广西植物, 2021, 41(9): 1465–1475.
[38] 侯路路, 闫瑞瑞, 张宇, 辛晓平. 放牧强度对草甸草原羊草功能性状的影响[J]. 中国农业科学, 2020, 53(13): 2562–2572.
[39] 赵平, 孙谷畴, 彭少麟. 植物氮素营养的生理生态学研究[J]. 生态科学, 1998, 17(2): 39–44.
[40] Tessier J T, Raynal D J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation [J]. Journal of Applied Ecology, 2003, 40: 523–534.
[41] Magyar G, Kun A, Oborny B, Stuefer J F. Importance of plasticity and decision–making strategies for plant resource acquisition in spatio–temporally variable environments [J]. New Phytologist, 2007, 174: 182–193.
[42] 詹书侠, 陈伏生, 胡小飞, 甘露, 朱友林. 中亚热带丘陵红壤区森林演替典型阶段土壤氮磷有效性[J]. 生态学报, 2009, 29(9): 4673–4680.
[43] 王玉平, 陶建平, 刘晋仙, 何泽. 不同光环境下6种常绿阔叶林树种苗期的叶片功能性状[J]. 林业科学, 2012, 48(11): 23–29.
|