[1] 朱瑞良, 马晓英, 曹畅, 曹子寅. 中国苔藓植物多样性研究进展[J]. 生物多样性, 2022, 30(7): 86–97.
[2] 艾尼瓦尔?吐米尔, 维尼拉?伊利哈尔, 买买提明?苏来曼. 乌鲁木齐市苔藓植物多样性和分布及与环境因子的关系[J]. 干旱区资源与环境, 2023, 37(8): 137–144.
[3] Olejniczak S A, ?ojewska E, Kowalczyk T, Sakowicz T. Chloroplasts: state of research and practical applications of plastome sequencing [J]. Planta, 2016, 244(3): 517–527.
[4] Shaw J, Lickey E B, Schilling E E, Small R L. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III [J]. American Journal of Botany, 2007, 94(3): 275–288.
[5] Du X, Zeng T, Feng Q, Hu L, Luo X, Weng Q, He J, Zhu B. The complete chloroplast genome sequence of yellow mustard (Sinapis alba L.) and its phylogenetic relationship to other Brassicaceae species [J]. Gene, 2020, 731: 144340.
[6] Powell W, Morgante M, McDevitt R, Vendramin G G, Rafalski J A. Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines [J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(17): 7759–7763.
[7] Yang A H, Zhang J J, Yao X H, Huang H W. Chloroplast microsatellite markers in Liriodendron tulipifera (Magnoliaceae) and cross-species amplification in L. chinense [J]. American Journal of Botany, 2011, 98(5): 123–126.
[8] Xue J, Wang S, Zhou S L. Polymorphic chloroplast microsatellite loci in Nelumbo (Nelumbonaceae) [J]. American Journal of Botany, 2012, 99(6): 240–244.
[9] 段义忠, 张凯. 沙冬青属植物叶绿体基因组对比和系统发育分析[J]. 西北植物学报, 2020, 40(8): 1323–1332.
[10] Jin J J, Yu W B, Yang J B, Song Y, dePamphilis C W, Yi T S, Li D Z. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes [J]. Genome Biology, 2020 ,21(1): 241.
[11] Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data [J]. Bioinformatics (Oxford, England), 2012, 28(12): 1647–1649.
[12] Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice [J]. Nucleic Acids Research, 1994, 22(22): 4673–80.
[13] Shi L, Chen H, Jiang M, Wang L, Wu X, Huang L, Liu C. CPGAVAS2, an integrated plastome sequence annotator and analyzer [J]. Nucleic Acids Research, 2019, 47(W1): W65–W73.
[14] Greiner S, Lehwark P, Bock R. Organellar Genome DRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes [J]. Nucleic Acids Res, 2019, 47(W1): W59–W64.
[15] Benson G. Tandem repeats finder: a program to analyze DNA sequences [J]. Nucleic Acids Res. 1999, 27(2): 573–580.
[16] Beier S, Thiel T, Münch T, Scholz U, Mascher M. MISA-web: a web server for microsatellite prediction [J]. Bioinformatics, 2017, 33(16): 2583–2585.
[17] Kurtz S, Choudhuri J V, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. REPuter: the manifold applications of repeat analysis on a genomic scale [J]. Nucleic Acids Res, 2001, 29(22): 4633–4642.
[18] Katoh K, Standley D M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability [J]. Molecular Biology and Evolution, 2013, 30(4): 772–780.
[19] Darling A C, Mau B, Blattner F R, Perna N T. Mauve: multiple alignment of conserved genomic sequence with rearrangements [J]. Genome research, 2004,14(7): 1394–403.
[20] Amiryousefi A, Hyv?nen J T, Poczai P. IRscope: An online program to visualize the junction sites of chloroplast genomes [J]. Bioinformatics, 2018, 34(17): 3030–3031.
[21] Cole T C H, Hilger H H, Goffinet B. Bryophyte phylogeny poster (BPP) [J]. Peer J Preprints, 2019, 7: e27571v3.
[22] Minh B Q, Schmidt H A, Chernomor O, Schrempf D, Woodhams M D, von Haeseler A, Lanfear R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era [J]. Molecular Biology and Evolution, 2020, 1, 37(5): 1530–1534.
[23] Huang H, Shi C, Liu Y, Mao S, Gao L. Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: genome structure and phylogenetic relationships [J]. BMC Evolutionary Biology, 2014, 14(1): 151.
[24] Cox C J, Hedderson T A. Phylogenetic relationships among the ciliate arthrodontous mosses: Evidence from chloroplast and nuclear DNA sequences [J]. Plant Systematics and Evolution, 1999, 215: 119–139.
[25] Goffinet B, Shaw A J, Cox C J. Phylogenetic inferences in the dung-moss family Splachnaceae from analyses of cpDNA sequence data and implications for the evolution of entomophily [J]. American Journal of Botany, 2004, 91(5): 748–759.
[26] Goffinet B, ShawA J. Independent origins of cleistocarpy in the Splachnaceae: Analyses of cpDNA sequences and polyphyly of the Voitioideae (Bryophyta) [J]. Systematic Botany, 2002, 27(2): 203–208.
[27] 刘恒. 植物叶绿体基因组tRNA结构变异和进化分析[D]. 西安: 西北大学硕士学位论文, 2021.
[28] Raubeson L A, Peery R, Chumley T W, Dziubek C, Fourcade H M, Boore J L, Jansen R K. Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus [J]. BMC Genomics, 2007, 8(1): 174.
[29] Park I, Yang S, Choi G, Kim W J, Moon B C. The complete chloroplast genome sequences of Aconitum pseudolaeve and Aconitum longecassidatum, and development of molecular markers for distinguishing species in the Aconitum subgenus Lycoctonum [J]. Molecules, 2017, 22(11): 2012.
[30] Vanichanon A, Blake N K, Sherman J D, Talbert L E. Multiple origins of allopolyploid Aegilops triuncialis [J]. Theoretical and Applied Genetics, 2003, 106(5): 804–810.
[31] Holwerda B C, Jana S, Crosby W L. Chloroplast and mitochondrial DNA variation in Hordeum vulgare and Hordeum spontaneum [J]. Genetics, 1987, 114(4): 1271–1291.
[32] 马孟莉, 张薇, 孟衡玲, 卢丙越. 草果叶绿体基因组特征及系统发育分析[J]. 中草药, 2021, 52(19): 6023–6031.
[33] 富贵, 刘晶, 李军乔. 密花香薷叶绿体基因组结构及系统进化分析[J]. 中草药, 2022, 53(6): 1844–1853.
[34] 柏国清, 卢元, 尉倩,刘安成, 李仁娜, 丛晓峰, 周军辉, 陈尘. 尾花细辛与花叶细辛叶绿体基因组比较及系统发育分析[J]. 药学学报, 2023, 58(5): 1364–1371.
|