[1] 高继银, Parks C R, 杜跃强. 山茶属植物主要原种彩色图 集[M]. 杭州: 浙江科学技术出版社, 2005: 1–20.
[2] 张国彬, 冯玲玲, 周吉源. 山茶属植物的研究现状与展望[J]. 湖北林业科技, 2004(2): 45–49.
[3] 肖调江, 夏丽芳. 山茶属植物资源的开发和利用[J]. 中国野生植物, 1991(1): 44–45.
[4] 卫兆芬. 中国山茶属一新种[J]. 植物研究, 1986, 6(4): 141–143.
[5] 中国科学院中国植物志编辑委员会. 中国植物志(第49卷第3分册)[M]. 北京: 科学出版社, 1998.
[6] 汪松, 解焱. 中国物种红色名录[M]. 北京: 高等教育出版社, 2004.
[7] 叶创兴, 李琳林, 石祥刚, 陈昱华. 关于开发张氏红山茶若干问题的思考[J]. 广东园林, 2009(2): 62–66.
[8] 杨维雄, 周庆宏, 王有兵, 严毅, 李子光, 高晓杰. 杜鹃红山茶研究进展[J]. 林业调查规划, 2013, 38( 4): 45–49.
[9] 李先民, 蒋月喜, 李春牛,卜朝阳, 周锦业. 杜鹃红山茶无土栽培基质的筛选[J]. 江苏农业科学, 2017, 45( 20): 147–151.
[10] 汪越, 易慧琳, 刘楠, 罗建, 徐翊, 任海, 曾振新. 光强和施肥对杜鹃红山茶成花品质的影响[J]. 生态科学, 2016, 35( 6): 41–45.
[11] 李辛雷, 孙振元, 李纪元. 濒危植物杜鹃红山茶种群结构和动态变化[J]. 植物资源与环境学报, 2018, 27(2): 17–23.
[12] 张燕. 杜鹃红山茶在原产地生长特性的调查报告[J]. 重庆林业科技, 2007(1): 21–22.
[13] 吴晓静, 邓石婷, 谭杨帆. 杜鹃红山茶嫁接砧木选择比较试验[J]. 安徽农学通报, 2008, 14(14): 120–121.
[14] 刘就, 陈考科, 林喜珀, 邓石婷. 杜鹃红山茶的栽培技术[J]. 中国热带农业, 2007(1): 61–62.
[15] 高继银, 苏玉华, 胡羡聪. 国内外茶花名种识别与欣赏[M]. 杭州: 浙江科学技术出版社, 2007: 1–3.
[16] 高继银, 刘信凯, 赵强明. 四季茶花杂交新品种彩色图 集[M]. 杭州: 浙江科学技术出版社, 2016: 1–581.
[17] 林剑波, 张俊丽, 刘和平. 杜鹃红山茶与山茶种间杂交技术研究[J]. 现代园艺, 2020(13): 44–45.
[18] 杜明杰, 钟原, 成仿云. 芍药属组间杂交亲本及杂交组合筛选[C]//中国观赏园艺研究进展. 哈尔滨: 中国园艺学会, 2018: 196–200.
[19] 钟乃盛, 冯桂梅, 黄万坚, 严丹峰, 刘信凯, 高继银. 杜鹃红山茶种间杂交F1代实生苗主要性状的遗传表达[C]//中国观赏园艺进展2012. 广州: 中国园艺学会, 2012: 151–159.
[20] 季道潘. 遗传学[M]. 浙江: 浙江农业大学出版社, 1997.
[21] 钟乃盛, 叶琦君, 刘信凯, 严丹峰, 高继银. 杜鹃红山茶F1代回交种性状表达趋向的研究[C]//中国观赏园艺研究进展. 哈尔滨: 中国园艺学会, 2018: 152–157.
[2] Kumar R, Kaushik S C. Performance evaluation of green roof and shading for thermal protection of buildings[J]. Build Environment, 2003, 40: 1505–1511.
[3] 林涓, 唐礼俊, 钱吉. 城市发展与生物多样性保护[J]. 上海环境科学, 1999, 18(4): 188–189.
[4] 王晓晨, 张新波, 赵新华, 王江海. 绿化屋顶基质材料及厚度对屋面径流雨水水质的影响[J]. 中国给排水, 2015, 31(1): 95–99.
[5] 肖远志, 李卫东, 王双伍, 王春梅, 何涛. 城市屋顶绿化植物选择研究[J]. 湖南农业科学, 2010(9): 113– 116.
[6] 周伟伟, 王雁, 韩丽莉. 北京市屋顶绿化植物选择的调查研究[J]. 安徽农业科学. 2008, 36: 200 – 201, 204.
[7] 郭微, 李婷婷, 郑娟华, 陈平, 俞龙生. 屋顶绿化植物松叶佛甲草的耐热抗旱性研究[J]. 广东农业科学, 2014, 41(15): 43–46.
[8] 叶少萍, 张俊涛, 苏扬, 许昌超. 简单式屋顶绿化基质厚度筛选[J]. 林业与环境科学, 2018, 34(2): 58–63.
[9] 黄卫昌, 秦俊, 胡永红. 屋顶绿化植物的选择––景天类植物在上海地区的应用[J]. 安徽农业科学, 2005, 33(6): 1041–1043.
[10] 邓磊, 温敏, 郭微, 徐玉芬. 干旱胁迫复水对4种鸭跖草科植物叶色生理生化的影响[J]. 生态学杂志, 2020, 39(2): 478–486.
[11] 郭微, 刘萍, 邓磊, 王金将, 洪岚. 不同光照强度对假紫万年青生长和叶绿素荧光参数的影响[J]. 热带亚热带植物学报, 2018, 26(3): 255–261.
[12] 汤聪, 刘念, 郭微, 蔡鑫, 苏建华. 广州地区8种草坪式屋顶绿化植物的抗旱性[J]. 草业科学, 2014, 31(10): 1867–1876.
[13] 王刚, 魏荣, 黄玉, 许铭宇. 轻型屋顶绿化研究进展[J]. 湖南农业科学, 2018(11): 120–124.
[14] Durhman A K, Rowe D B, Rugh C L. Effect of watering regimen on chlorophyll fluorescence and growth of selected green roof plant taxa[J]. Hortscience, 2006, 41: 1623–1628.
[15] 王学奎. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2008: 280–281.
[16] 张治安, 陈展宁. 植物生理学实验技术[M]. 长春: 吉林大学出版社, 2008.
[17] Nagase A, Dunnett N. Drought tolerance in different vegetation types for extensive green roofs: Effects of watering and diversity[J]. Landscape Urban Plan, 2010, 97: 318–327.
[18] Geerts S, Raes D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas[J]. Agriculture Water Manage, 2009, 96: 1275–1284.
[19] Sharp R E, Hsiao T C, Silk W K. Growth of the maize primary root at low water potentials. II. The role of growth and deposition of hexose and potassium in osmotic adjustment[J]. Plant Physiology, 1990, 93: 1337–1346.
[20] Ruiz-Sanchez M C, Domingo R, Castel J R. Review: Deficit irrigation in fruit trees and vines in Spain[J]. Span. J. Agriculture Resources, 2010, 8: S5–S20.
[21] 陆剑. 屋顶绿地植被抗旱性增强技术及机理研究[D]. 广州: 中山大学博士学位论文, 2013: 7–8.
[22] Wang H F, Zhu Y H, Sun H J. Determination of drought tolerance using root activities in Robinia pseudoacacia 'Idaho' transformed with mtl-D gene[J]. Forestry Studies in China, 2006, 8: 75–81.
[23] 刘莹, 吕慧能, 盖钧锰. 大豆苗期根系与抗旱性基因型差异的研究[J]. 作物杂志, 2003(4): 12–15.
[2] Zheng W, Rang L, Bergman B. Structural Characteristics of the Cyanobacterium–Azolla Symbioses[M]// Microbiology Monographys (Vol.8), Berlin: Springer-Verlag, 2009: 235–263.
[3] Gates J E, Fisher R W, Candle R A. The occurrence of corynoforme bacteria in the leaf cavity of Azolla[J]. Arch Microbiology, 1980, 127: 163–165.
[4] Forni C, Gentili S, van Hove C, Grilli Caiola M G. Isolation and characterization of the bacteria living in the sporocarps of Azolla filiculoides Lam[J]. Annual Microbiology, 1990, 40: 235–243.
[5] 郑斯平, 陈彬, 关雄, 郑伟文. 小叶满江红内生细菌多样性的PCR–DGGE及电子显微镜分析[J]. 农业生物技术学报, 2008, 16(3): 508–514.
[6] Ran L, Larsson J, Vigil-Stenman T, Nylander J A A, Ininbergs K, Zheng W W, Lapidus A, Lowry S, Haselkorn R, Bergman B. Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium[J]. PLOS One, 2010(5): e11486.
[7] Li F W, Brouwer P, Carretero P, Cheng S, de Vries J, Delauxet P M, Eily A, Koppers N, Kuo L Y, Li Z, Simenc M, Small? I, Wafula E, Angarita S, Barker M S, Br?utigam A, de Pamphilis C, Gould S, Hosmani P S, Huang Y M, Huette B, Kato Y, Liu? X, Maere S, McDowel L, Mueller L A, Nierop K G. J, Rensing S A, Robison T, Rothfels C J, Sige E M, Song Y, Timilsena P R, Van de Peer Y, Wang H L, Wilhelmsson P K.L, Wolf P G, Xu X, Der J P, Schluepmann H, Wong G K S, Pryer K M. Fern genomes elucidate land plant evolution and cyanobacterial symbioses[J]. Nature Plants, 2018, 4(7): 460–472.
[8] 陈坚, 郑伟文, 郑益平, 陈彬, 郑斯平, 朱炳耀. 水生植物小叶满江红内生真菌与古菌的发现及基于高通量测序的群落组成分析[J]. 农业生物技术学报, 2019, 27(11): 2063–2072.
[9] 白克智, 于赛玲, 陈维纶, 杨善英, 崔澂. 无藻满江红和满江红鱼腥藻的分离与培养[J]. 科学通报, 1979, 14: 664–666.
[10] 陈坚, 陈彬, 郑斯平, 郑益平, 朱炳耀, 郑伟文. 用高通量测序和电镜技术研究结合态氮对水生植物满江红内生细菌群落组成和结构的影响[J]. 水生生物学报, 2020, 44(6): 1287–1296.
[11] Alwakeel S S, Ameen F, Al Gwaiz H, Sonbol H, Alghamdi S, Moharram A M, Al-Bedak O A. Keratinases produced by Aspergillus stelliformis, Aspergillus sydowii, and Fusarium brachygibbosum isolated from human hair: yield and activity[J]. Journal of Fungi, 2021, 7: 471.
[12] Bu C F , Zhang Q, Zeng J, Cao X, Hao Z N, Qiao D R, Cao Y. Identification of a novel anthocyanin synthesis pathway in the fungus Aspergillus sydowii H-1[J]. BMC Genomics, 2020, 21: 29.
[13] Liu Y J, Zhang J L, Li C, Mu X G, Liu X L, W L, Zhao Y C, Zhang P, Li X D, Zhang X X. Antimicrobial secondary metabolites from the seawater-derived fungus Aspergillus sydowii SW9[J]. Molecules, 2019, 24(24): 4596.
[14] Niu S W, Yang L H, Chen T T, Hong B H, Pei S X, Shao Z Z, Zhang G Y. New monoterpenoids and polyketides from the deep-sea sediment–derived fungus Aspergillus sydowii MCCC 3A00324[J]. Marin Drugs, 2020, 18: 561.
[15] Cong B L, Wang N F, Liu S H, Liu F, Yin X F, Shen J H. Isolation, characterization and transcriptome analysis of a novel Antarctic Aspergillus sydowii strain MS-19 as a potential lignocellulosic enzyme source[J]. BMC Microbiology, 2017, 17: 129.
[16] Carrapico F. Are bacteria the 3rd partner of the Azolla-Anabaena symbiosis?[J]. Plant Soil, 1991, 137: 157–160.
[17] 姚一建, 李玉(主译). 菌物学概论(第四版)[M]. 北京: 中国农业出版社, 2002: 159–182.
[18] Mims C W, Richardson E A, Timberlake W E. Ultrastructural analysis of conidiophore and conidium development in the fungus Aspergillus nidulans using freeze-substitution [J]. Protoplasma, 1988, 144: 132–141.
[19] Houbraker J, Kocsube S, Visagie C M, Yilmaz N, Wang, X C, Meijer M, Kraak B, Hubka V, Bensch K, Samson R A, Frisvad J C. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species[J]. Studies in Mycology, 2020, 95: 5–169.
[20] Zheng W W , Ulla R, Zheng S P, Bao X D , Chen B, Gao Y, Guan X, Larsson J, Bergman B. Multiple modes of cell death discovered in a prokaryotic (cyanobacterial) endosymbion[J]. PLOS One, 2013, 8(6): e66147.
[21] Mizushima N. Autophagy: process and function[J]. Genes and Development, 2007, 21(22): 2861–2873.
[22] Kourtis N, Tavernarakis N. Autophagy and cell death in model organisms[J]. Cell Death and Differentiation, 2009, 16: 21–30.
[23] Galluzzi L, Baehrecke E H, Ballabio A. Molecular definitions of autophagy and related processes[J]. The EMBO Journal, 2017, 36(13): 1811–1835. |