[1] 邢国芳, 冯万军, 牛旭龙, 张春来, 马金虎, 郭平毅. 植物激素调控侧根发育的生理机制[J]. 植物生理学报, 2015, 51(12): 2101–2108.
[2] Chen Y, Xie Y, Song C, Zheng L, Rong X, Jia L, Luo L, Zhang C, Qu X, Xuan W. A comparison of lateral root patterning among dicot and monocot plants [J]. Plant Science, 2018, 274: 201–211.
[3] 储薇, 郭信来, 张晨, 周柳婷, 吴则焰, 林文雄. 丛枝菌根真菌–植物–根际微生物互作研究进展与展望[J]. 中国生态农业学报(中英文), 2022, 30(11): 1709–1721.
[4] Yao Q, Zhu H H, Chen J Z. Growth responses and endogenous IAA and iPAs changes of litchi (Litchi chinensis Sonn.) seedlings induced by arbuscular mycorrhizal fungal inoculation [J]. Scientia Horticulturae, 2005, 105(1): 145–151.
[5] Liu C Y, Hao Y, Wu X L, Dai F J, Abd-Allah E F, Wu Q S, Liu S R. Arbuscular mycorrhizal fungi improve drought tolerance of tea plants via modulating root architecture and hormones [J]. Plant Growth Regulation, 2024, 102(1): 13–22.
[6] Torres-Martínez H H, Napsucialy-Mendivil S, Dubrovsky J G. Cellular and molecular bases of lateral root initiation and morphogenesis [J]. Current Opinion in Plant Biology, 2022, 65: 102115.
[7] Tian H Y, De Smet I, Ding Z J. Shaping a root system: regulating lateral versus primary root growth [J]. Trends in Plant Science, 2014, 19(7): 426–431.
[8] Yang Y, Wang R, Wang L, Cui R, Zhang H, Che Z, Hu D, Chu S, Jiao Y, Yu D. GmEIL4 enhances soybean (Glycine max) phosphorus efficiency by improving root system development [J]. Plant Cell Environment, 2023, 46(2): 592–606.
[9] 李芳, 郝志鹏, 陈保冬. 菌根植物适应低磷胁迫的分子机制[J]. 植物营养与肥料学报, 2019, 25(11): 1989–1997.
[10] 张淑彬, 王幼珊, 殷晓芳, 刘建斌, 武凤霞. 不同施磷水平下AM真菌发育及其对玉米氮磷吸收的影响[J]. 植物营养与肥料学报, 2017, 23(3): 649–657.
[11] Joo S J, Choi S H, Jie E Y, Lee O R, Kim S W. Phytosulfokine promotes cell division in protoplast culture and adventitious shoot formation in protoplast-derived calluses of Nicotiana benthamiana [J]. Plant Biotechnology Reports, 2022, 16(6): 633–643.
[12] Di Q, Li Y, Zhang D, Wu W, Zhang L, Zhao X, Luo L, Yu L. A novel type of phytosulfokine, PSK-ε, positively regulates root elongation and formation of lateral roots and root nodules in Medicago truncatula [J]. Plant Signaling & Behavior, 2022, 17(1): 2134672.
[13] Ren H, Santner A, Pozo J C D, Murray J A, Estelle M. Degradation of the cyclin-dependent kinase inhibitor KRP1 is regulated by two different ubiquitin E3 ligases [J]. The Plant Journal, 2008, 53(5): 705–716.
[14] Guo B, Chen L, Dong L, Yang C, Zhang J, Geng X, Zhou L, Song L. Characterization of the soybean KRP gene family reveals a key role for GmKRP2a in root development [J]. Frontiers in Plant Science, 2023, 14: 1096467.
[15] Rivas M á, Friero I, Alarcón M V, Salguero J. Auxin-cytokinin balance shapes maize root architecture by controlling primary root elongation and lateral root development [J]. Frontiers in Plant Science, 2022, 13: 836592.
[16] Zhao H M, Ma T F, Wang X, Deng Y T, Ma H L, Zhang R S, Zhao J. OsAUX1 controls lateral root initiation in rice (Oryza sativa L.) [J]. Plant Cell Environment, 2015, 38(11): 2208–2222.
[17] 梁政, 柯美玉, 陈志威, 陈栩, 高震. 大豆GMPIN2家族基因调控根系发育功能初探[J]. 作物学报, 2023, 49(1): 24–35.
[18] Xie Q, Frugis G, Colgan D, Chua N H. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development [J]. Genes & development, 2000, 14(23): 3024–3036.
[19] Yin L, Chen X, Chen Q, Wei D, Hu X Y, Jia A Q. Diketopiperazine modulates Arabidopsis thalianaroot system architecture by promoting interactions of auxin receptor TIR1 and IAA7/17 proteins [J]. Plant and Cell Physiology, 2022, 63(1): 57–69.
[20] Maqbool S, Hassan M A, Xia X, York L M, Rasheed A, He Z. Root system architecture in cereals: progress, challenges and perspective [J]. Plant Journal, 2022, 110(1): 23–42.
[21] Li H, Shen J J, Zheng Z L, Lin Y K, Yang Z B. The Rop GTPase switch controls multiple developmental processes in Arabidopsis [J]. Plant Physiology, 2001, 126(2): 670–684.
[22] Phillips J M, Hayman D S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection [J]. Transactions of the British Mycological Society, 1970, 55(1): 118–158.
[23] Biermann B, Linderman R G. Quantifying vesicular-arbuscular mycorrhizas: a proposed method towards standardization [J]. New Phytologist, 1981, 87(1): 63–67.
[24] Si C C, Liang Q G, Liu H J, Wang N, Kumar S, Chen Y L, Zhu G P. Response mechanism of endogenous hormones of potential storage root to phosphorus and its relationship with yield and appearance quality of sweetpotato [J]. Frontiers in Plant Science, 2022, 13: 872422.
[25] Xie L, Wen D, Wu C, Zhang C. Transcriptome analysis reveals the mechanism of internode development affecting maize stalk strength [J]. BMC Plant Biology, 2022, 22(1): 49.
[26] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method [J]. Methods: A Companion to Methods in Enzymology, 2001, 25(4): 402–408.
[27] 陈洁, 南丽丽, 汪堃, 夏静, 马彪, 姚宇恒, 何海鹏. 低磷胁迫对红豆草根系构型的影响[J]. 干旱地区农业研究, 2023, 41(2): 61–69.
[28] Chiu C H, Roszak P, Orvo?ová M, Paszkowski U. Arbuscular mycorrhizal fungi induce lateral root development in angiosperms via a conserved set of MAMP receptors [J]. Current Biology, 2022, 32(20): 4428–4437.
[29] Chen W, Li J, Zhu H, Xu P, Chen J, Yao Q. Arbuscular mycorrhizal fungus enhances lateral root formation in Poncirus trifoliata (L.) Raf. as revealed by RNA-Seq analysis[J]. Frontiers in Plant Science, 2017, 8: 2039.
[30] Chen W, Li J, Zhu H, Xu P, Chen J, Yao Q. The differential and interactive effects of arbuscular mycorrhizal fungus and phosphorus on the lateral root formation in Poncirus trifoliata (L.) Raf. [J]. Scientia Horticulturae, 2017, 217: 258–265.
[31] Yao Q, Wang L R, Zhu H H, Chen J Z. Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings[J]. Scientia Horticulturae, 2009, 121(4): 458–461.
[32] Chen E, Liao H X, Chen B M, Peng S L. Arbuscular mycorrhizal fungi are a double-edged sword in plant invasion controlled by phosphorus concentration [J]. New Phytologist, 2020, 226(2): 295–300.
[33] 陈开, 唐瑭, 张冬平, 陈云, 吕冰. 生长素和细胞分裂素参与构建水稻根系的研究进展[J]. 植物生理学报, 2020, 56(12): 2495–2509.
[34] Jiang L, Matthys C, Marquez-Garcia B, DE Cuyper C, Smet L, DE Keyser A, Boyer F, Beeckman T, Depuydt S, Goormachtig S. Strigolactones spatially influence lateral root development through the cytokinin signaling network [J]. Journal of Experimental Botany, 2016, 67(1): 379–389.
[35] 丁兆军, 白洋. 根系发育和微生物组研究现状及未来发展趋势[J]. 中国科学:生命科学, 2021, 51(10): 1447–1456.
[36] 沈月, 陶宝杰, 华夏, 吕冰, 刘立军, 陈云. 独脚金内酯与激素互作调控根系生长的研究进展[J]. 生物技术通报, 2022, 38(8): 24–31.
[37] 张喆慧, 王昕, 金可默, 程凌云, 王宝兰, 申建波. 一氧化氮在植物发育及植物–微生物互作中的作用机制研究进展[J]. 植物营养与肥料学报, 2021, 27(4): 706–718.
[38] Zhu H H, Zhang R Q, Chen W L, Gu Z H, Xie X L, Zhao H Q, Yao Q. The possible involvement of salicylic acid and hydrogen peroxide in the systemic promotion of phenolic biosynthesis in clover roots colonized by arbuscular mycorrhizal fungus [J]. Journal of Plant Physiology, 2015, 178: 27–34.
[39] Tang S, Shahriari M, Xiang J, Pasternak T, Igolkina A, Aminizade S, Zhi H, Gao Y, Roodbarkelari F, Sui Y. The role of AUX1 during lateral root development in the domestication of the model C4 grass Setaria italica [J]. Journal of Experimental Botany, 2022, 73(7): 2021–2034.
[40] Villaécija-Aguilar J A, K?r?sy C, Maisch L, Hamon-Josse M, Petrich A, Magosch S, Chapman P, Bennett T, Gutjahr C. KAI2 promotes Arabidopsis root hair elongation at low external phosphate by controlling local accumulation of AUX1 and PIN2 [J]. Current Biology, 2022, 32(1): 228–236.
[41] Hanlon M T, Coenen C. Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation [J]. New Phytologist, 2011, 189(3): 701–709.
[42] 吴志勇, 顾红, 程大伟, 李兰, 何莎莎, 李明, 陈锦永. 油菜素内酯调控植物根系发育机制研究进展[J]. 中国农业科技导报, 2022, 24(2): 68–76.
|