亚热带植物科学 ›› 2025, Vol. 54 ›› Issue (5): 487-496.DOI: 10.3969/j.issn.1009-7791.2025.05.001
• 研究论文 • 下一篇
许 静1,2,潘仁富1,2,黄思铭1,黄卫昌2,李明河1*
收稿日期:2025-03-29
接受日期:2025-04-22
出版日期:2025-10-31
发布日期:2025-12-17
通讯作者:
李明河
基金资助:XU Jing1,2, PAN Ren-fu 1,2, HUANG Si-ming1, HUANG Wei-chang2, LI Ming-he1*
Received:2025-03-29
Accepted:2025-04-22
Online:2025-10-31
Published:2025-12-17
Contact:
LI Ming-he
摘要: 以观赏兰科植物多腺拟蝶唇兰Psychopsis sanderae叶片为材料,基于高通量测序技术,对该物种完整的质体基因组进行组装和注释,并解析其质体基因组特征及系统发育位置。结果表明,多腺拟蝶唇兰质体基因组大小为143 932 bp,呈环状四分体结构,GC含量37.1%;共注释到蛋白编码基因74个、tRNA基因38个、rRNA基因8个和假基因7个,共计127个,其中ndh基因家族全谱系假基因化或丢失;IR区边界高度保守,LSC/IRb位于rpl22基因内,SSC/IRa位于ycf1基因内;检测到44个简单重复序列位点,其中以A或T单核苷酸重复最高,占70.45%;获得核苷酸多态性的高变异热点区域6个:trnQUUG、trnEUUC、trnSGGA、rps18、rps12、rpl16。系统发育分析显示,该物种位于文心兰亚族Oncidiinae基部。本研究首次解析多腺拟蝶唇兰质体基因组特征,为拟蝶唇兰属及其近缘类群的分子标记开发和系统发育研究奠定基础。
中图分类号:
许 静, 潘仁富, 黄思铭, 黄卫昌, 李明河. 多腺拟蝶唇兰质体基因组特征及其系统发育分析[J]. 亚热带植物科学, 2025, 54(5): 487-496.
XU Jing, PAN Ren-fu, HUANG Si-ming, HUANG Wei-chang, LI Ming-he. Plastid Genome and Phylogenetic Analysis of Psychopsis sanderae[J]. Subtropical Plant Science, 2025, 54(5): 487-496.
| [1] Pridgeon A M, Cribb P J, Chase M C, Rasmussen F N. Epidendroideae (Part 2): Genera Orchidacearum [M]. Oxford: Oxford University Press, 2009, 5: 1–585. [2] Rafinesque C S. Flora Telluriana [M]. Philadelphia: H. Probasco, 1838: 135. [3] Swartz O P. Kongl [J]. VetenskapsAcademiens Nya Handlingar, 1800, 2(21): 239–240. [4] Lückel E, Braem G J. Psychopsis und Psychopsiella: Eine alte und eine neue Gattung der Oncidium-Verwandtschaft [J]. Die Orchidee, 1982, 33(1): 1–7. [5] Neubig K M, Whitten W M, Williams N H, Blanco M A, Endara L, Burleigh J G, Silvera K, Cushman J C, Chase M W. Generic recircumscriptions of Oncidiinae (Orchidaceae: Cymbidieae) based on maximum likelihood analysis of combined DNA datasets [J]. Botanical Journal of the Linnean Society, 2012, 168(2): 117–146. [6] Givnish T J, Spalink D, Ames M, Lyon S P, Hunter S J, Zuluaga A, Iles W J D, Clements M A, Arroyo M T K, Leebens-Mack J, Endara L, Kriebel R, Neubig K M, Whitten W M, Williams N H, Cameron K M. Orchid phylogenomics and multiple drivers of their extraordinary diversification [J]. Proceedings of the Royal Society B: Biological Sciences, 2015, 282(1814): 20151553. [7] Li Y X, Li Z H, Schuiteman A, Chase M W, Li J W, Huang W C, Hidayat A, Wu S S, Jin X H. Phylogenomics of Orchidaceae based on plastid and mitochondrial genomes [J]. Molecular Phylogenetics and Evolution, 2019, 139: 106540. [8] Niu Z T, Pan J J, Zhu S Y, Li L D, Xue Q Y, Liu W, Ding X Y. Comparative analysis of the complete plastomes of Apostasia wallichii and Neuwiedia singapureana (Apostasioideae) reveals different evolutionary dynamics of IR/SSC boundary among photosynthetic orchids [J]. Frontiers in Plant Science, 2017, 8: 1713. [9] Delannoy E, Fujii S, Colas des Francs-Small C, Brundrett M, Small I. Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes [J]. Molecular Biology and Evolution, 2011, 28(7): 2077–2086. [10] Allen G C, Flores-Vergara M A, Krasynanski S, Kumar S, Thompson W F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide [J]. Nature Protocols, 2006, 1(5): 2320–2325. [11] Andrews S. FastQC: a quality control tool for high throughput sequence data [J]. Bioinformatics, 2010, 26(15): 1968–1971. [12] Jian J J, Yu W B, Yang J B, Song Y, dePamphilis C W, Yi T S, Li D Z. GetOrganelle: a simple and fast pipeline for de novo assembly of a complete circular chloroplast genome using genome skimming data [J]. BioRxiv, 2018: 256479. [13] Wick R R, Schultz M B, Zobel J, Holt K E. Bandage: interactive visualization of de novo genome assemblies [J]. Bioinformatics, 2015, 31(20): 3350–3352. [14] Qu X J, Moore M J, Li D Z, Yi T S. PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes [J]. Plant Methods, 2019, 15: 1–12. [15] Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Meintjes P, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data [J]. Bioinformatics, 2012, 28(12): 1647–1649. [16] Greiner S, Lehwark P, Bock R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes [J]. Nucleic Acids Research, 2019, 47(W1): W59–W64. [17] Beier S, Thiel T, Münch T, Scholz U, Mascher M. MISA–web: a web server for microsatellite prediction [J]. Bioinformatics, 2017, 33(16): 2583–2585. [18] Amiryousefi A, Hyv?nen J, Poczai P. IRscope: an online program to visualize the junction sites of chloroplast genomes [J]. Bioinformatics, 2018, 34(17): 3030–3031. [19] Brudno M, Malde S, Poliakov A, Do C B, Couronne O, Dubchak I, Batzoglou S. Glocal alignment: finding rearrangements during alignment [J]. Bioinformatics, 2003, 19(s1): i54–i62. [20] Darling A C E, Mau B, Blattner F R, Perna N T. Mauve: multiple alignment of conserved genomic sequence with rearrangements [J]. Genome Research, 2004, 14(7): 1394–1403. [21] Chase M W, Cameron K M, Freudestein J V, Pridgeon A M, Salazar G, Van den Berg C, Schuiteman A. An update classification of Orchidaceae [J]. Botanical Journal of the Linnean Society, 2015, 177(2): 151–174. [22] Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform [J]. Nucleic Acids Research, 2002, 30(14): 3059–3066. [23] Capella-Gutiérrez S, Silla-Martínez J M, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses [J]. Bioinformatics, 2009, 25(15): 1972–1973. [24] Minh B Q, Schmidt H A, Chernomor O, Schrempf D, Woodhams M D, von Haeseler A, Lanfear R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era [J]. Molecular Biology and Evolution, 2020, 37(5): 1530–1534. [25] Kalyaanamoorthy S, Minh B Q, Wong T K F, von Haeseler A, Jermiin L S. ModelFinder: fast model selection for accurate phylogenetic estimates [J]. Nature Methods, 2017, 14(6): 587–589. [26] Kim Y K, Jo S, Cheon S H, Kwak M, Kim Y D, Kim K J. Plastome evolution and phylogeny of subtribe Aeridinae (Vandeae, Orchidaceae) [J]. Molecular Phylogenetics and Evolution, 2020, 144: 106721. [27] Niu Z T, Zhu S Y, Pan J J, Li L D, Jing S, Ding X Y. Comparative analysis of Dendrobium plastomes and utility of plastomic mutational hotspots [J]. Scientific Reports, 2017, 7(1): 2073. [28] Chen Y Q, Zhong H, Zhu Y T. Plastome structure and adaptive evolution of Calanthe s. l. species [J]. PeerJ, 2020, 8: e10051. [29] Zavala-Páez M, Vieira L N, Baura V A, Balsanelli E, Souza E M, Cevallos M, Chase M W, Smidt E. Comparative plastid genomics of neotropical Bulbophyllum (Orchidaceae; Epidendroideae) [J]. Frontiers in Plant Science, 2020, 11: 799. [30] Pan I C, Liao D C, Wu F H, Daniell H, Singh N D, Chang C, Shih M C, Chan M T, Lin C S. Complete chloroplast genome sequence of an orchid model plant candidate: Erycina pusilla apply in tropical Oncidium breeding [J]. PLoS One, 2012, 7(4): e34738. [31] Kim H T, Kim J S, Moore M J, Neubig K M, Williams N H, Whitten W M, Kim J H. Seven new complete plastome sequences reveal rampant independent loss of the ndh gene family across orchids and associated instability of the inverted repeat/small single-copy region boundaries [J]. PLoS One, 2015, 10(11): e0142215. [32] Qu X J, Zhang X J, Cao D L, Guo X X, Mower J P, Fan S J. Plastid and mitochondrial phylogenomics reveal correlated substitution rate variation in Koenigia (Polygonoideae, Polygonaceae) and a reduced plastome for Koenigia delicatula including loss of all ndh genes [J]. Molecular Phylogenetics and Evolution, 2022, 174: 107544. [33] Ruhlman T A, Zhang J, Blazier J C, Saber J S M, Jansen R K. Recombination-dependent replication and gene conversion homogenize repeat sequences and diversify plastid genome structure [J]. American Journal of Botany, 2017, 104(4): 559–572. [34] Zhou C Y, Lin W J, Li R Y, Wu Y H, Liu Z J, Li M H. Characterization of Angraecum (Angraecinae, Orchidaceae) plastomes and utility of sequence variability hotspots [J]. International Journal of Molecular Sciences, 2023, 25(1): 184. [35] Gu C H, Ma L, Wu Z Q, Chen K, Wang Y X. Comparative analyses of chloroplast genomes from 22 Lythraceae species: inferences for phylogenetic relationships and genome evolution within Myrtales [J]. BMC Plant Biology, 2019, 19: 1–19. [36] Thode V A, Lohmann L G. Comparative chloroplast genomics at low taxonomic levels: a case study using Amphilophium (Bignonieae, Bignoniaceae) [J]. Frontiers in Plant Science, 2019, 10: 796. [37] Rokas A, Williams B L, King N, Carroll S B. Genome-scale approaches to resolving incongruence in molecular phylogenies [J]. Nature, 2003, 425(6960): 798–804. |
| [1] | 崔繁昊, 赵心竹, 李 红, 周梦丽, 王瑞红. 柴胡属植物叶绿体基因组密码子偏好性分析[J]. 亚热带植物科学, 2025, 54(6): 599-612. |
| [2] | 李梦露, 杨梦思, 刘 梁, 赵 博, 刘华英, 刘将军, 熊 超. 基于流式细胞术与基因组Survey的大齿牛果藤基因组大小及特征分析[J]. 亚热带植物科学, 2025, 54(6): 613-620. |
| [3] | 李 红, 周梦丽, 王 霞, 郭 蕾, 王瑞红. 36种黄精属植物叶绿体基因组密码子使用偏好性分析[J]. 亚热带植物科学, 2025, 54(5): 497-507. |
| [4] | 李秋佳, 邱秉慧, 李凌雨, 陈 爽, 余克琴. 植物三维基因组学研究进展[J]. 亚热带植物科学, 2025, 54(5): 578-586. |
| [5] | 凌腾泓, 黄稚清, 谢进聪, 吴蔼民. 巨桉HDAC基因家族的全基因组鉴定与分析[J]. 亚热带植物科学, 2025, 54(4): 365-377. |
| [6] | 张翊凡, 颜 茵, 陈育明, 黄思铭, 李明河. 龙石斛叶绿体基因组特征及系统发育分析[J]. 亚热带植物科学, 2025, 54(4): 378-386. |
| [7] | 王翌婷, 郝晗睿, 倪靖岚, 陈艳红, 张 健, 刘国元. 旱柳与垂柳木质部细胞比较及CesA基因表达分析[J]. 亚热带植物科学, 2025, 54(3): 239-248. |
| [8] | 赵金涛, 叶兴状, 王安邦, 陈志云, 翁慧莹, 张国防. 枫香树TCP基因家族鉴定与表达分析[J]. 亚热带植物科学, 2025, 54(2): 109-120. |
| [9] | 周美君, 尹 月, 张永洪. 基于流式细胞术和基因组Survey检测黄连木基因组大小[J]. 亚热带植物科学, 2024, 53(6): 495-502. |
| [10] | 高颖捷, 缪 佳, 黄 翔, 赵雪利. 基于流式细胞术测定狸尾豆和蝙蝠草基因组大小[J]. 亚热带植物科学, 2024, 53(6): 503-511. |
| [11] | 钟凤娣, 凌腾泓, 牟桂萍, 朱孔宇, 王鹏龙, 闫晓东. 药用植物猴耳环的全长转录组测序分析[J]. 亚热带植物科学, 2024, 53(5): 416-424. |
| [12] | 涂绍强, 柯玲俊, 蔡月琴, 陆銮眉, 余惠文. 中国龙船花基因组Survey分析[J]. 亚热带植物科学, 2024, 53(3): 214-219. |
| [13] | 王若娴, 朱瑞艳, 开国银, 时 敏. 药用植物PAL基因及其功能研究进展[J]. 亚热带植物科学, 2024, 53(2): 181-190. |
| [14] | 罗岸,左紫怡,焦雄,刘夏. 烟草合子时期表达基因NtZE1的克隆及结构分析[J]. 亚热带植物科学, 2019, 48(02): 103-108. |
| [15] | 陈汉鑫,鞠玉栋,万学锋. 宽叶弹簧草的组织培养与快速繁殖[J]. 亚热带植物科学, 2018, 47(04): 391-394. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
闽公网安备 35020602000789号