[1] 王瑞丽,于贵瑞,何念鹏,王秋凤,赵宁,徐志伟. 气孔特征与叶片功能性状之间关联性沿海拔梯度的变化规律:以长白山为例[J]. 生态学报, 2016,36(8): 2175—2184.[2] Hetherington A M, Woodward F I. The role of stomatal in sensing and driving environmental change[J]. Nature, 2003, 424(6951): 901—908.[3] 孟繁霞,张蜀秋,娄成后. 气孔功能的结构基础[J]. 植物学通报, 2000,17(1): 27—33.[4] 范苏鲁,苑兆和,冯立娟. 干旱胁迫对大丽花生理生化指标的影响[J]. 应用生态学报, 2011,22(3): 651—657.[5] Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S M A. Plant drought stress: effects, mechanisms and management[J]. Agronomy for Sustainable Development, 2009,29(1): 185—212.[6] 李芳兰,包维楷. 植物叶片形态解剖结构对环境变化的响应与适应[J]. 植物学报, 2005,22: 118—127.[7] Casson S A, Hetherington A M. Environmental regulation of stomatal development[J]. Current Opinion in Plant Biology, 2009,13(1): 90—95.[8] 张德巧,徐增莱,褚晓芳,姜燕琴,於虹. 蓝莓叶片与抗旱性相关的解剖结构指标研究[J]. 果树学报, 2008,25(6): 864—867.[9] Casson S, Gray J E. Influence of environmental factors on stomatal development[J]. New Phytologist, 2008,178(1): 9—23.[10] 王忠. 植物生理学(第2版)[M]. 北京: 中国农业出版社, 2014: 65—71.[11] Lawson T. Guard cell photosynthesis and stomatal function[J]. New Phytologist, 2009,181(1): 13—34.[12] 周丽娟,陈尔娟,韩笑,何用娟,陈善娜,陈小兰. 激素与气孔发育研究进展[J]. 西北植物学报, 2015,35(4): 845—851.[13] Bergmann D C, Sack F D. Stomatal development[J]. Annual Review of Plant Biology, 2007,58(4): 163—181.[14] Shimada T, Sugano S S, Hara-Nishimura I. Positive and negative peptide signals control stomatal density[J]. Cellular and Molecular Life Sciences, 2011,68(12): 2081—2088.[15] Serna L, Fenoll C. Stomatal development in Arabidopsis: how to make a functional pattern[J]. Trends in Plant Science, 2000,5(11): 458—460.[16] 安荣,杨延青,刘鑫,杨飞. 枣果实气孔形态特征研究[J]. 中国园艺文摘, 2015(2): 19—20.[17] Peschel S, Beyer M, Knoche M. Surface characteristics of sweet cherry fruit: stomata-number, distribution, functionality and surface wetting[J]. Scientia Horticulturae, 2003,97(3): 265—278.[18] Paiva E, Lemos J, Oliveira D. Imbibition of Swietenia macrophylla (Meliaceae) seeds: The role of stomata[J]. Annals of Botany, 2006,98(1): 213—217.[19] Azad A K, Sawa Y, Ishikawa T, Shibata H. Temperature-dependent stomatal movement in tulip petals controls water transpiration during flower opening and closing[J]. Annals of Applied Biology, 2007,150(1): 81—87.[20] Davies K L, Stpiczyńska M, Gregg A. Nectar-secreting floral stomata in Maxillaria anceps Ames & C. Schweinf. (Orchidaceae)[J]. Annals of Botany, 2005,96(2): 217—227.[21] 王碧霞,曾永海,王大勇,赵蓉,胥晓. 叶片气孔分布及生理特征对环境胁迫的响应[J]. 干旱地区农业研究, 2010,28(2): 122—126.[22] 尹秀玲,温静,刘欣. 蔷薇科12属代表植物叶片气孔密度研究[J]. 北方果树, 2008(1): 4—6.[23] 郭瑶,吴建慧. 水分胁迫对绢毛委陵菜气孔特征的影响[J]. 吉林农业科技学院学报, 2015,24(4): 13—16.[24] 吴建慧,郭瑶,崔艳桃. 水分胁迫对绢毛委陵菜叶绿体超微结构及光合生理因子的影响[J]. 草业科学, 2012,29(3): 434—439.[25] Galmés J, Medrano H, Flexas J. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms [J]. New Phytologist, 2007,175(1): 81—93.[26] Hamanishi E T, Thomas B R, Campbell M M. Drought induces alterations in the stomatal development program in Populus[J]. Journal of Experimental Botany, 2012,63(13): 4959—4971.[27] 陈文荣,曾玮玮,李云霞,李永强,郭卫东. 高丛蓝莓对干旱胁迫的生理响应及其抗旱性综合评价[J]. 园艺学报, 2012,39(4): 637—646.[28] 于海秋,王晓磊,蒋春姬,王晓光,曹敏建. 土壤干旱下玉米幼苗解剖结构的伤害进程[J]. 干旱地区农业研究, 2008,26(5): 143—147.[29] 王顺才,邹养军,马锋旺. 干旱胁迫对3种苹果属植物叶片解剖结构、微形态特征及叶绿体超微结构的影响[J]. 干旱地区农业研究, 2014, 32(3): 15—23.[30] Timothy D A, Lee H, Franks P J, Beerling D J, Gray J E, Hunt L. Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2012,367(1588): 547—555.[31] 杨惠敏,张晓艳,王根轩,王亚馥,乔立新. 干旱条件下两种山黧豆气孔特性及种子ODAP、粗蛋白和淀粉积累的研究[J]. 兰州大学学报, 2004,40: 64—67.[32] Pearce D W, Millard S, Bray D F, Rood S B. Stomatal characteristics of riparian poplar in a semiarid environment[J]. Tree Physiology, 2006,26(2): 211—218. [33] 谢兆森,宋世鑫,曹红梅. 不同蓝莓品种的叶片结构和气孔特性比较[J]. 北方园艺, 2015(4): 5—8.[34] 刘世鹏,刘济明,曹娟云,白重炎,师荣. 干旱胁迫下枣树叶片表皮气孔分布及特征分析[J]. 安徽农业科学, 2006,34(7): 1315—1318.[35] 赵和文,崔金腾,王杰,陈建梅. 干旱胁迫下常春藤响应的生理生化机制[J]. 中国农学通报, 2013,29(7): 12—19.[36] 姚卫杰,张艳福,丹曲,郭其强,李慧娥. 砂生槐叶片气孔特性对干旱和低温胁迫的响应[J]. 贵州农业科学, 2015,43(9): 23—29.[37] 徐萍,李进,吕海英,李永洁,张侠. 干旱胁迫下水杨酸对银沙槐子叶表皮气孔开度的影响[J]. 植物生理学报, 2014,50(4): 510—518.[38] 吴丽君,李志辉,杨模华,王佩兰. 赤皮青冈幼苗叶片解剖结构对干旱胁迫的响应[J]. 应用生态学报, 2015,26(12): 3619—3626. [39] 冯燕,王彦荣,胡小文. 水分胁迫对幼苗期霸王叶片生理特性的影响[J]. 草业科学, 2011,28(4): 577—581.[40] 胡妍妍,白利娟,张婷,郑鑫,曾丽荣,骆建霞. 干旱胁迫对德国补血草气孔特征及生理特性的影响[J]. 湖北农业科学, 2015,54(20): 5066—5069.[41] 杨再强,谭文,刘朝霞,陈艳秋. 土壤水分胁迫对设施番茄叶片气孔特性的影响[J]. 生态学杂志, 2015,34(5): 1234—1240.[42] 王玉珏,付秋实,郑禾,温常龙,程琳,赵冰,郭仰东. 干旱胁迫对黄瓜幼苗生长?光合生理及气孔特征的影响[J]. 中国农业大学学报, 2010,15(5): 12—18.[43] Xu Z Z, Zhou G S. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass[J]. Journal of Experimental Botany, 2008,59(12): 3317—3325.[44] Fraser L H, Greenall A, Carlyle C, Turkington R, Friedman C R. Adaptive phenotypic plasticity of Pseudoroegneria spicata: response of stomatal density, leaf area and biomass to changes in water supply and increased temperature[J]. Annals of Botany, 2009,103(5): 769—775.[45] 徐坤,邹琦,赵燕. 土壤水分胁迫与遮荫对生姜生长特性的影响[J]. 应用生态学报, 2003,14(10): 1645—1648.[46] 孟雷,李磊鑫,陈温福,徐正进,刘丽霞. 水分胁迫对水稻叶片气孔密度大小及净光合速率的影响[J]. 沈阳农业大学学报, 1999,30(5): 477—480. [47] Sam O, Jerez E, Dellamico J, Ruiz-sanchez M C. Water stress induced changes in anatomy of tomato leaf epidermes[J]. Biologia Plantarum, 2000,43(2): 275—277.[48] Makbul S, Gvler N S, Durmus N, Seher G. Changes in anatomical and physiological parameters of soybean under drought stress[J]. Turkish Journal of Botany, 2011,35(4): 369—377.[49] 王学臣,任海云,娄成后. 干旱胁迫下植物根系与地上部间的信息传递[J]. 植物生理学通讯, 1992,28(6): 397— 402.[50] Rajabpoor S, Kiani S, Sorkheh K, Tavakoli F. Changes induced by osmotic stress in the morphology, biochemistry, physiology, anatomy and stomatal parameters of almond species (Prunus L. spp.) grown in vitro[J]. Journal of Forestry Research, 2014,25(3): 523—534.[51] 杨惠敏,王根轩. 干旱和CO2浓度升高对干旱区春小麦气孔密度及分布的影响[J]. 植物生态学报, 2001,25(3): 312—316.[52] 李思,张莉,姚雅琴. 干旱对冬小麦叶片气孔、活性氧和光合作用的影响[J]. 河北大学学报, 2015,35(5): 487—493.[53] 高冠龙,张小由,常宗强,鱼腾飞,赵虹. 植物气孔导度的环境响应模拟及其尺度扩展[J]. 生态学报, 2016,36(6): 1491—1500.[54] Franks P J, Drake P L, Beerling D J. Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus[J]. Plant Cell & Environment, 2009,32(12): 1737—1748.[55] Miyashita K, Tanakamaru S, Maitani T, Kimura K. Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress[J]. Environmental and Experimental Botany, 2005,53: 205—214.[56] 于文颖,纪瑞鹏,冯锐,赵先丽,张玉书. 不同生育期玉米叶片光合特性及水分利用效率对水分胁迫的响应[J]. 生态学报, 2015,35(9): 2902—2909.[57] 蒙祖庆,宋丰萍,刘振兴,张方凯. 干旱及复水对油菜苗期光合及叶绿素荧光特性的影响[J]. 中国油料作物学报, 2012,34(1): 40—47.[58] 白鹏,冉春艳,谢小玉. 干旱胁迫对油菜蕾薹期生理特性及农艺性状的影响[J]. 中国农业科学, 2014,47(18): 3566—3576.[59] 庞杰,张凤兰,郝丽珍,杨忠仁,赵鹏. 沙芥幼苗叶片解剖结构和光合作用对干旱胁迫的响应[J]. 生态环境学报, 2013(4): 575—581.[60] 任磊,赵夏陆,许靖,张宏毅,郭彦宏,郭福龙,张春来,吕晋慧. 4种茶菊对干旱胁迫的形态和生理响应[J]. 生态学报, 2015, 35(15): 5131—5139.[61] 纪文龙,范意娟,李辰,魏灵芝,姜金铸,李冰冰,贾文锁. 干旱胁迫下葡萄叶片气孔导度和水势动态的变化规律[J]. 中国农业大学学报, 2014,19(4): 74—80.[62] 柯世省,魏燕,陈贤田,葛勇,吴秀珍,陶梦希. 云锦杜鹃气孔导度和蒸腾速率对水分的响应[J]. 安徽农业科学, 2007, 35(21): 6363—6365.[63] 陈昕,徐宜凤,张振英. 干旱胁迫下石灰花楸幼苗叶片的解剖结构和光合生理响应[J]. 西北植物学报, 2012,32(1): 111—116.[64] 韩永芬,卢欣石,孟军江,王铁梅,舒健虹. 菊苣航天诱变新品系叶片旱生结构的比较研究[J]. 中国草地学报, 2011,33(1): 111—116.[65] 孟庆杰,王光全,董绍锋,张丽,龚正道. 桃叶片组织解剖结构特征与其抗旱性关系的研究[J]. 干旱地区农业研究, 2004, 22(3): 123—126.[66] 张风娟. 干旱胁迫下不同甘蔗品种叶片解剖结构及生理生化的变化[D]. 南宁: 广西大学硕士学位论文, 2014.[67] 高彦萍,冯莹,马志军,李强,张秀娟. 水分胁迫下不同抗旱类型大豆叶片气孔特性变化研究[J]. 干旱地区农业研究, 2007,25(2): 77—79. |