[1] Salgado-Luarte C, Gianoli E. Herbivory may modify functional responses to shade in seedlings of a light-demanding tree species[J]. Functional Ecology, 2011,25: 492—499.
[2] 程明,李志强,姜闯道,石雷,唐宇丹,张金政. 青稞的光合特性及光破坏防御机制[J]. 作物学报, 2008,34(10): 1805—1811.
[3] Donald R O. When there is too much light[J]. Plant Physiology, 2001,125(1): 29—32.
[4] 姜闯道,高辉远,邹琦. 缺铁使大豆叶片激发能的耗散增加[J]. 植物生理与分子生物学学报, 2002,28(2): 127—132.
[5] 许大全. 光合作用效率[M]. 上海: 上海科学技术出版社, 2002.
[6] Walters R G. Towards an understanding of photosynthetic acclimation[J]. Journal of Experimental Botany, 2005,56(11): 435—447.
[7] 阳成伟,彭长连,陈贻竹. 植物光破坏防御机制的研究进展[J]. 植物学通报, 2003,20(4): 495—500.
[8] 彭涛,姚广,高辉远,李鹏民,王未未,孙山,赵世杰. 植物叶片和冠层光化学反射指数与叶黄素循环的关系[J]. 生态学报, 2009(4): 1987—1993.
[9] Demmig-Adams B, Adams W W. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation[J]. New Phytologist, 2006,172(1): 11—21.
[10] Atanasova L, Stefanov D, Yordanov I, Kornova K, Kavardzikov L. Comparative characteristics of growth and photosynthesis of sun and shade leaves from normal and pendulum walnut (Juglans regia L.) trees[J]. Photosynthetica, 2003,41(2): 289—292.
[11] 王博轶,马洪军,苏腾伟,刘涛,王齐. 两种热带雨林树苗对环境光强变化的生理响应和适应机制[J]. 植物生理学报, 2012(3): 232—240.
[12] Powles S B. Photoinhibition of photosynthesis induced by visible light[J]. Annual Review of Plant Physiology, 1984,35(1): 15—44.
[13] Pinnola A, Dall’Osto L, Gerotto C. Zeaxanthin Binds to Light-Harvesting Complex Stress-Related Protein to Enhance Nonphotochemical Quenching in Physcomitrella patens[J]. The Plant Cell Online, 2013,25(9): 3519—3534.
[14] Matsubara S, Morosinotto T, Osmond C B, Bassi R. Short-and long-term operation of the lutein-epoxide cycle in light-harvesting antenna complexes[J]. Plant physiology, 2007,144(2): 926—941.
[15] Dall'Osto L, Caffarri S, Bassi R. A mechanism of nonphotochemical energy dissipation, independent from PsbS, revealed by a conformational change in the antenna protein CP26[J]. The Plant Cell Online, 2005,17(4): 1217—1232.
[16] Niyogi K K, Grossman A R, Bj?rkman O. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion[J]. The Plant Cell Online, 1998,10(7): 1121—1134.
[17] Caliandro R, Nagel K A, Kastenholz B. Effects of altered α-and β-branch carotenoid biosynthesis on photoprotection and whole-plant acclimation of Arabidopsis to photo-oxidative stress[J]. Plant, Cell & Environment, 2013,36(2): 438—453.
[18] Dall'Osto L, Fiore A, Cazzaniga S, Giuliano G, Bassi R. Different roles of α-and β-branch xanthophylls in photosystem assembly and photoprotection[J]. Journal of Biological Chemistry, 2007,282(48): 35056—35068.
[19] Polívka T, Sundstr?m V. Ultrafast dynamics of carotenoid excited states-from solution to natural and artificial systems[J]. Chemical Reviews, 2004,104(4): 2021—2072.
[20] García-Plazaola J I, Matsubara S, Osmond C B. The lutein epoxide cycle in higher plants: its relationships to other xanthophyll cycles and possible functions[J]. Functional Plant Biology, 2007,34(9): 759—773.
[21] Latowski D, Grzyb J, Strza?ka K. The xanthophyll cycle-molecular mechanism and physiological significance[J]. Acta Physiologiae Plantarum, 2004,26(2): 197—212.
[22] F?rster B, Osmond C B, Pogson B J. De novo synthesis and degradation of Lx and V cycle pigments during shade and sun acclimation in avocado leaves[J]. Plant physiology, 2009,149(2): 1179—1195.
[23] Pfündel E, Bilger W. Regulation and possible function of the violaxanthin cycle[J]. Photosynthesis Research, 1994,42(2): 89—109.
[24] F?rster B, Pogson B J, Osmond C B. Lutein from deepoxidation of lutein epoxide replaces zeaxanthin to sustain an enhanced capacity for nonphotochemical chlorophyll fluorescence quenching in avocado shade leaves in the dark[J]. Plant Physiology, 2011,156(1): 393—403.
[25] Niyogi K K, Shih C, Chow W S. Photoprotection in a zeaxanthin-and lutein-deficient double mutant of Arabidopsis[J]. Photosynthesis Research, 2001,67(1-2): 139—145.
[26] Johnson M P, Davison P A, Ruban A V. The xanthophyll cycle pool size controls the kinetics of non-photochemical quenching in Arabidopsis thaliana[J]. Febs Letters, 2008,582(2): 262—266.
[27] Schindler C, Lichtenthaler H K. Photosynthetic CO2-Assimilation, chlorophyll fluorescence and zeaxanthin accumulation in field grown maple trees in the course of a sunny and a cloudy day[J]. Journal of plant physiology, 1996,148(3): 399—412.
[28] Havaux M, Dall'Osto L, Cuiné S. The effect of zeaxanthin as the only xanthophyll on the structure and function of the photosynthetic apparatus in Arabidopsis thaliana[J]. Journal of Biological Chemistry, 2004,279(14): 13878—13888.
[29] 于志波. 拟南芥维生素K环氧化物还原酶参与光保护机制的研究[D]. 山东: 山东农业大学硕士学位论文, 2014.
[30] Oquist G, Hunter N P A. Effects of cold acclimationon the susceptibility of photosynthesis to photoinhibition in scots pine and in winter and spring cereals: a fluorescence analysis[J]. Functional Ecology, 1991,5(1): 91—100.
[31] Horton P, Lee P. Stimulation of a cyclic electron-transfer pathway around photosystem Ⅱ by phosphorylation of chloroplast thylakoid proteins[J]. FEBS Letters, 1983,162(1): 81—84.
[32] 易现峰,杨月琴. 强光下植物的光保护机制[J]. 河南科技大学学报(自然科学版), 2005,26(6): 78—81.
[33] 王忠. 植物生理学[M]. 北京: 中国农业出版社, 2010.
[34] 许大全. 光合作用学[M]. 北京: 科学出版社, 2010.
|