[1] 纪剑辉, 周颖君, 吴贺贺, 杨立明. 水稻Trihelix转录因子家族全基因组分析及功能预测[J]. 遗传, 2015, 37(12): 1228–1241.
[2] Ma Z, Liu M, Sun W, Huang L, Wu Q, Bu T, Li C, Chen H. Genome–wide identification and expression analysis of the trihelix transcription factor family in tartary buckwheat (Fagopyrum tataricum)[J]. BMC Plant Biology, 2019, 19(1): 344.
[3] Kaplan-Levy R N, Brewer P B, Quon T, Smyth D R. The trihelix family of transcription factors––light, stress and development[J]. Trends in Plant Science, 2012, 17(3): 163–171.
[4] Lampugnani E R, Kilinc A, Smyth D R. PETAL LOSS is a boundary gene that inhibits growth between developing sepals in Arabidopsis thaliana[J]. Plant Journal, 2012, 71(5): 724–735.
[5] Du H, Huang M, Liu L. The genome wide analysis of GT transcription factors that respond to drought and waterlogging stresses in maize[J]. Euphytica, 2016, 208(1): 113–122.
[6] Xi J, Qiu Y, Du L, Poovaiah B W. Plant-specific trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses[J]. Plant Science, 2012, 185–186: 274–280.
[7] Yu C, Song L, Song J, Ouyang Bo, Guo L, Shang L, Wang T, Li H, Zhang J, Ye Z. ShCIGT, a Trihelix family gene, mediates cold and drought tolerance by interacting with SnRK1 in tomato[J]. Plant Science, 2018, 270: 140–149.
[8] Qin Y, Ma X, Yu G, Wang Q, Wang L, Kong L, Kim W, Wang H W. Evolutionary history of trihelix family and their functional diversification[J]. DNA Research, 2014, 21(5): 499–510.
[9] 周轲. 转BcICE1基因烟草抗逆性研究[D]. 兰州: 西北师范大学硕士学位论文, 2017.
[10] 李晓旭, 郭存, 蒲文宣, 刘万峰, 张银霞, 孙楠, 何鑫玺, 刘成, 许良涛, 高军平. 普通烟草WOX转录因子家族的全基因组鉴定及分析[J]. 中国烟草学报, 2021, 27(1): 90–100.
[11] Russo E T, Laio A, Punta M. Density Peak clustering of protein sequences associated to a Pfam clan reveals clear similarities and interesting differences with respect to manual family annotation[J]. BMC Bioinformatics, 2021, 22(1): 121.
[12] Letunic I, Doerks T, Bork P. SMART 7: recent updates to the protein domain annotation resource[J]. Nucleic Acids Research, 2012, 40: D302–D305.
[13] Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H. ExPASy: SIB bioinformatics resource portal[J]. Nucleic Acids Research, 2012, 40(Web Server issue): W597–W603.
[14] Softberry, Inc. Softberry Releases 80 Free Bioinformatics Programs for Immediate Download by Academic Users[R]. Biotech Business Week, 2013.
[15] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194–1202.
[16] Li X, Guo C, Ahmad S, Wang Q, Yu J, Liu C, Guo Y. Systematic analysis of MYB family genes in potato and their multiple roles in development and stress responses[J]. Biomolecules, 2019, 9(8): 317.
[17] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870–1874.
[18] He Z, Zhang H, Gao S, Lercher M J, Chen W H, Hu S. Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees[J]. Nucleic Acids Research, 2016, 44(W1): W236–W241.
[19] Chanhee K, Lorna H, Yuhan F, Dietmar K. Predicting hyperosmolality-inducible transcription factors using MEME tools[J]. The FASEB Journal, 2021, 35(S1): 4656.
[20] Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis–acting regulatory DNA elements (PLACE) database: 1999[J]. Nucleic Acids Research, 1999, 27(1): 297–300.
[21] Magwanga R O, Kirungu J N, Lu P, Yang X, Dong Q, Cai X, Xu Y, Wang X, Zhou Z, Hou Y, Nyunja R, Agong S G, Hua J, Zhang B, Wang K, Liu F. Genome wide identification of the trihelix transcription factors and overexpression of Gh_A05G2067 (GT-2), a novel gene contributing to increased drought and salt stresses tolerance in cotton[J]. Physiologia Plantarum, 2019, 167(3): 447–464.
[22] Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana[J]. BMC Plant Biology, 2004, 4: 10.
[23] Tang H, Bowers J E, Wang X, Ming R, Alam M, Paterson A H. Synteny and collinearity in plant genomes[J]. Science, 2008, 320(5875): 486–488.
[24] Liu W, Zhang Y, Li W, Lin Y, Wang C, Xu R, Zhang L. Genome-wide characterization and expression analysis of soybean trihelix gene family[J]. PeerJ, 2020, 8: e8753.
[25] O'Brien M, Kaplan-Levy R N, Quon T, Sappl P G, Smyth D R. PETAL LOSS, a trihelix transcription factor that represses growth in Arabidopsis thaliana, binds the energy-sensing SnRK1 kinase AKIN10[J]. Journal of Experimental Botany, 2015, 66(9): 2475–2485.
[26] Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, Mcelver J, Aux G, Patton D, Meinke D. Identification of genes required for embryo development in Arabidopsis[J]. Plant Physiology, 2004, 135(3): 1206–1220.
[27] Song J, Shen W Y, Shaheen S, Li Y Y, Liu Z R, Wang Z, Pang H B, Ahmed Z, Genome wide identification and analysis of the trihelix transcription factors in sunflower[J]. Biologia Plantarum, 2021, 65: 80–87.
[28] Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez M M, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis[J]. Plant Cell, 2005, 17(12): 3470–3488.
[29] White A J, Dunn M A, Katebrown, Hughes M A. Comparative analysis of genomic sequence and expression of a lipid transfer protein gene family in winter barley[J]. Journal of Experimental Botany, 1994, 45(12): 1885–1892.
[30] Li J, Zhang M, Sun J, Mao X, Wang J, Wang J, Liu H, Zheng H, Zhen Z, Zhao H, Zou D. Genome-wide characterization and identification of trihelix transcription factor and expression profiling in response to abiotic stresses in rice (Oryza sativa L.)[J]. International Journal of Molecular Sciences, 2019, 20(2): 251.
|