亚热带植物科学 ›› 2022, Vol. 51 ›› Issue (2): 81-91.DOI: 10.3969/j.issn.1009-7791.2022.02.001
• 植物生理生化与分子生物学 • 下一篇
朱 瑜1,谷 巍1,2*,邱蓉丽1,汤俊杰1,刘梦雪1,郎培蕾1
出版日期:
2022-04-30
发布日期:
2022-08-03
通讯作者:
谷 巍
基金资助:
ZHU Yu1, GU Wei1,2*, QIU Rong-li1, TANG Jun-jie1, LIU Meng-xue1, LANG Pei-lei1
Online:
2022-04-30
Published:
2022-08-03
Contact:
GU Wei
摘要: 以药用蒲公英(Taraxacum officinale)为试材,研究不同浓度盐胁迫对其生长特性、有效成分积累和离子吸收分配的影响。结果表明,低盐胁迫(0.1% NaCl)对药用蒲公英生长和菊苣酸含量无显著影响,叶中Na+含量与对照无显著差异,K+含量及K+/Na+显著升高;高盐胁迫(≥0.2% NaCl)下其生长受到显著抑制,菊苣酸含量显著降低,类囊体膜结构随着盐胁迫加剧趋于紊乱,光合能力减弱,叶片Na+含量显著上升,而K+、Ca2+和Mg2+含量下降,K+/Na+、Ca2+/Na+和Mg2+/Na+显著降低。离子运输选择性系数(SCa,Na、SMg,Na、SK,Na)随着盐胁迫加剧呈先升后降趋势。相关性分析表明,盐胁迫下蒲公英叶片Na+含量与叶片生理指标呈极显著负相关。因此,叶片Na+富集是药用蒲公英遭受盐害导致生长受抑制的主要原因之一。
中图分类号:
朱 瑜,谷 巍,邱蓉丽,汤俊杰,刘梦雪,郎培蕾. 盐胁迫对药用蒲公英生长特性及有效成分积累与离子吸收分配效应的影响[J]. 亚热带植物科学, 2022, 51(2): 81-91.
ZHU Yu, GU Wei, QIU Rong-li, TANG Jun-jie, LIU Meng-xue, LANG Pei-lei. Growth Characteristics, Accumulation of Effective Components and Ion Absorption and Distribution of Taraxacum officinale under Salt Stress[J]. Subtropical Plant Science, 2022, 51(2): 81-91.
[1] Sharifi-Rad M, Roberts T H, Matthews K R, Bezerra C F, Morais-Braga M F B, Coutinho H D M, Sharopov F, Salehi B, Yousaf Z, Sharifi-Rad M, Del Mar Contreras M, Varoni E M, Verma D R, Iriti M, Sharifi-Rad J. Ethnobotany of the genus Taraxacum–Phytochemicals and antimicrobial activity[J]. Phytotherapy Research, 2018, 32(11): 2131–2145. [2] 国家药典委员会. 中华人民共和国药典.一部[S]. 北京: 中国医药科技出版社, 2020: 367. [3] 乔永刚, 王勇飞, 曹亚萍, 贺嘉欣, 贾孟君, 李政, 张鑫瑞, 宋芸. 药用蒲公英低温和高温胁迫下内参基因筛选与相关基因表达分析[J]. 园艺学报, 2020, 47(6): 1153–1164. [4] Nan L, Guo Q, Cao S. Archaeal community diversity in different types of saline-alkali soil in arid regions of Northwest China[J]. Journal of Bioscience and Bioengineering, 2020, 130(4): 382–389. [5] 付娆, 张海洋, 梁晓艳, 顾寅钰, 邢延富, 宋延静, 李萌, 李茹霞, 王向誉, 郭洪恩. 蒲公英对NaCl单盐和海水复合盐胁迫的生理响应[J]. 山东农业科学, 2020, 52(2): 33–37. [6] Gamalero E, Bona E, Todeschini V, Lingua G. Saline and arid soils: Impact on bacteria, plants, and their interaction[J]. Biology (Basel), 2020, 9(6): 116. [7] Soni S, Kumar A, Sehrawat N, Kumar A, Kumar N, Lata C, Mann A. Effect of saline irrigation on plant water traits, photosynthesis and ionic balance in durum wheat genotypes[J]. Saudi Journal of Biological Sciences, 2021, 28(4): 2510–2517. [8] Hasanuzzaman M, Raihan M R H, Masud A A C, Rahman K, Nowroz F, Rahman M, Nahar K, Fujita M. Regulation of reactive oxygen species and antioxidant defense in plants under salinity[J]. International Journal of Molecular Sciences, 2021, 22(17): 9326. [9] Goussi R, Manaa A, Derbali W, Cantamessa S, Abdelly C, Barbato R. Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in Thellungiella salsuginea[J]. Journal of Photochemistry and Photobiology B: Biology, 2018, 183: 275–287. [10] Ran X, Wang X, Gao X, Liang H, Liu B, Huang X. Effects of salt stress on the photosynthetic physiology and mineral ion absorption and distribution in white willow (Salix alba L.)[J]. PLoS One, 2021, 16(11): e0260086. [11] Ahmed U, Rao M J, Qi C, Xie Q, Noushahi H A, Yaseen M, Shi X, Zheng B. Expression profiling of flavonoid biosynthesis genes and secondary metabolites accumulation in populus under drought stress[J]. Molecules, 2021, 26(18): 1–17. [12] Bhattacharya A, Sood P, Citovsky V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection[J]. Molecular Plant Pathology, 2010, 11(5): 705–719. [13] Zuo Z, Weraduwage S M, Lantz A T, Sanchez L M, Weise S E, Wang J, Childs K L, Sharkey T D. Isoprene acts as a signaling molecule in gene networks important for stress responses and plant growth[J]. Plant Physiology, 2019, 180(1): 124–152. [14] Cai Z, Liu X, Chen H, Yang R, Chen J, Zou L, Wang C, Chen J, Tan M, Mei Y, Wei L. Variations in morphology, physiology, and multiple bioactive constituents of Lonicerae Japonicae Flos under salt stress[J]. Scientific Reports, 2021, 11(1): 3939. [15] 刘强, 周晓梅, 王占武. NaCl处理对曼陀罗幼苗生长、光合、离子积累及抗氧化系统的影响[J]. 东北林业大学学报, 2021, 49(1): 33–37. [16] Tounsi S, Feki K, Hmidi D, Masmoudi K, Brini F. Salt stress reveals differential physiological, biochemical and molecular responses in T. monococcum and T. durum wheat genotypes[J]. Physiology and Molecular Biology of Plants, 2017, 23(3): 517–528. [17] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 134–137. [18] Bejaoui F, Salas J J, Nouairi I, Smaoui A, Abdelly C, Martínez-Force E, Youssef N B. Changes in chloroplast lipid contents and chloroplast ultrastructure in Sulla carnosa and Sulla coronaria leaves under salt stress[J]. Journal of Plant Physiology, 2016, 198: 32–38. [19] 袁军伟, 李敏敏, 刘长江, 韩斌, 尹勇刚, 孙艳, 贾楠, 郭紫娟, 赵胜建. 不同砧木与接穗组合对盐胁迫下的马瑟兰葡萄幼苗离子分布的影响[J]. 土壤通报, 2020, 51(1): 144–151. [20] 朱慧森, 方志红, 杨桂英, 赵祥, 董宽虎. 不同盐碱化草地披碱草生物量形成及根系对K+、Na+的选择性吸收[J]. 草地学报, 2010, 18(3): 383–387. [21] Frukh A, Siddiqi T O, Khan M I R, Ahmad A. Modulation in growth, biochemical attributes and proteome profile of rice cultivars under salt stress[J]. Plant Physiology and Biochemistry, 2020, 146: 55–70. [22] Huang Y, Fan G, Zhou D, Pang J. Phenotypic plasticity of four Chenopodiaceae species with contrasting saline-sodic tolerance in response to increased salinity-sodicity[J]. Ecology and Evolution, 2019, 9(4): 1545–1553. [23] 马剑, 刘贤德, 金铭, 刘建海, 赵国生, 范菊萍, 王艺林, 张虎. NaCl胁迫对文冠果幼苗生长性状的影响[J]. 中南林业科技大学学报, 2018, 38(1): 11–15. [24] Freschet G T, Swart E M, Cornelissen J H. Integrated plant phenotypic responses to contrasting above- and below-ground resources: key roles of specific leaf area and root mass fraction [J]. The New Phytologist, 2015, 206(4): 1247–1260. [25] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651–681. [26] Naeem M S, Warusawitharana H, Liu H, Liu D, Ahmad R, Waraich E A, Xu L, Zhou W. 5-aminolevulinic acid alleviates the salinity-induced changes in Brassica napus as revealed by the ultrastructural study of chloroplast[J]. Plant Physiology and Biochemistry, 2012, 57: 84–92. [27] 孔维萍, 程鸿, 岳宏忠. 镉胁迫对甜瓜幼苗叶片叶绿体超微结构及光合色素质量分数的影响[J]. 西北农业学报, 2020, 29(6): 935–941. [28] Shabala S, Bose J, Fuglsang A T, Pottosin I. On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils[J]. Journal of Experimental Botany, 2016, 67(4): 1015–1031. [29] Gierth M, M?ser P. Potassium transporters in plants-involvement in K+ acquisition, redistribution and homeostasis[J]. FEBS Letters, 2007, 581(12): 2348–2356. [30] Chattha W S, Patishtan J, Shafqat W, Maathuis F J M. Shoot potassium content provides a physiological marker to screen cotton genotypes for osmotic and salt tolerance[J]. International Journal of Phytoremediation, 2022, 24(4): 429–435. [31] Ghassemi-Golezani K, Farhangi-Abriz S. Foliar sprays of salicylic acid and jasmonic acid stimulate H+-ATPase activity of tonoplast, nutrient uptake and salt tolerance of soybean[J]. Ecotoxicology and Environmental Safety, 2018, 166: 18–25. [32] 李焕勇. NaCl处理对西伯利亚白刺幼苗中矿质元素含量的影响[J]. 植物生理学报, 2017, 53(12): 2125–2136. [33] 刘正祥, 魏琦, 张华新. 盐胁迫对沙枣幼苗不同部位矿质元素含量的影响[J]. 生态学杂志, 2017, 36(12): 3501–3509. [34] Borlotti A, Vigani G, Zocchi G. Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants[J]. BMC Plant Biologgy, 2012, 12: 189. [35] Rabhi M, Barhoumi Z, Ksouri R, Abdelly C, Gharsalli M. Interactive effects of salinity and iron deficiency in Medicago ciliaris[J]. Comptes Rendus Biologies, 2007, 330(11): 779–788. [36] Lanquar V, Ramos M S, Lelièvre F, Barbier-Brygoo H, Krieger-Liszkay A, Kr?mer U, Thomine S. Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency[J]. Plant Physiology, 2010, 152(4): 1986–1999. [37] Pilon M, Ravet K, Tapken W. The biogenesis and physiological function of chloroplast superoxide dismutases[J]. Biochimica et Biophysica Acta, 2011, 1807(8): 989–998. [38] Sun J, Sun Y, Ahmed R I, Ren A, Xie A M. Research progress on plant RING-finger proteins[J]. Genes (Basel), 2019, 10(12): 973. [39] Wang C, Chen L, Cai Z, Chen C, Liu Z, Liu S, Zou L, Tan M, Chen J, Liu X, Mei Y, Wei L, Liang J, Chen J. Metabolite profiling and transcriptome analysis explains difference in accumulation of bioactive constituents in licorice (Glycyrrhiza uralensis) under salt stress[J]. Frontiers in Plant Science, 2021, 12: 727882. [1] Sharifi-Rad M, Roberts T H, Matthews K R, Bezerra C F, Morais-Braga M F B, Coutinho H D M, Sharopov F, Salehi B, Yousaf Z, Sharifi-Rad M, Del Mar Contreras M, Varoni E M, Verma D R, Iriti M, Sharifi-Rad J. Ethnobotany of the genus Taraxacum–Phytochemicals and antimicrobial activity[J]. Phytotherapy Research, 2018, 32(11): 2131–2145. [2] 国家药典委员会. 中华人民共和国药典.一部[S]. 北京: 中国医药科技出版社, 2020: 367. [3] 乔永刚, 王勇飞, 曹亚萍, 贺嘉欣, 贾孟君, 李政, 张鑫瑞, 宋芸. 药用蒲公英低温和高温胁迫下内参基因筛选与相关基因表达分析[J]. 园艺学报, 2020, 47(6): 1153–1164. [4] Nan L, Guo Q, Cao S. Archaeal community diversity in different types of saline-alkali soil in arid regions of Northwest China[J]. Journal of Bioscience and Bioengineering, 2020, 130(4): 382–389. [5] 付娆, 张海洋, 梁晓艳, 顾寅钰, 邢延富, 宋延静, 李萌, 李茹霞, 王向誉, 郭洪恩. 蒲公英对NaCl单盐和海水复合盐胁迫的生理响应[J]. 山东农业科学, 2020, 52(2): 33–37. [6] Gamalero E, Bona E, Todeschini V, Lingua G. Saline and arid soils: Impact on bacteria, plants, and their interaction[J]. Biology (Basel), 2020, 9(6): 116. [7] Soni S, Kumar A, Sehrawat N, Kumar A, Kumar N, Lata C, Mann A. Effect of saline irrigation on plant water traits, photosynthesis and ionic balance in durum wheat genotypes[J]. Saudi Journal of Biological Sciences, 2021, 28(4): 2510–2517. [8] Hasanuzzaman M, Raihan M R H, Masud A A C, Rahman K, Nowroz F, Rahman M, Nahar K, Fujita M. Regulation of reactive oxygen species and antioxidant defense in plants under salinity[J]. International Journal of Molecular Sciences, 2021, 22(17): 9326. [9] Goussi R, Manaa A, Derbali W, Cantamessa S, Abdelly C, Barbato R. Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in Thellungiella salsuginea[J]. Journal of Photochemistry and Photobiology B: Biology, 2018, 183: 275–287. [10] Ran X, Wang X, Gao X, Liang H, Liu B, Huang X. Effects of salt stress on the photosynthetic physiology and mineral ion absorption and distribution in white willow (Salix alba L.)[J]. PLoS One, 2021, 16(11): e0260086. [11] Ahmed U, Rao M J, Qi C, Xie Q, Noushahi H A, Yaseen M, Shi X, Zheng B. Expression profiling of flavonoid biosynthesis genes and secondary metabolites accumulation in populus under drought stress[J]. Molecules, 2021, 26(18): 1–17. [12] Bhattacharya A, Sood P, Citovsky V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection[J]. Molecular Plant Pathology, 2010, 11(5): 705–719. [13] Zuo Z, Weraduwage S M, Lantz A T, Sanchez L M, Weise S E, Wang J, Childs K L, Sharkey T D. Isoprene acts as a signaling molecule in gene networks important for stress responses and plant growth[J]. Plant Physiology, 2019, 180(1): 124–152. [14] Cai Z, Liu X, Chen H, Yang R, Chen J, Zou L, Wang C, Chen J, Tan M, Mei Y, Wei L. Variations in morphology, physiology, and multiple bioactive constituents of Lonicerae Japonicae Flos under salt stress[J]. Scientific Reports, 2021, 11(1): 3939. [15] 刘强, 周晓梅, 王占武. NaCl处理对曼陀罗幼苗生长、光合、离子积累及抗氧化系统的影响[J]. 东北林业大学学报, 2021, 49(1): 33–37. [16] Tounsi S, Feki K, Hmidi D, Masmoudi K, Brini F. Salt stress reveals differential physiological, biochemical and molecular responses in T. monococcum and T. durum wheat genotypes[J]. Physiology and Molecular Biology of Plants, 2017, 23(3): 517–528. [17] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 134–137. [18] Bejaoui F, Salas J J, Nouairi I, Smaoui A, Abdelly C, Martínez-Force E, Youssef N B. Changes in chloroplast lipid contents and chloroplast ultrastructure in Sulla carnosa and Sulla coronaria leaves under salt stress[J]. Journal of Plant Physiology, 2016, 198: 32–38. [19] 袁军伟, 李敏敏, 刘长江, 韩斌, 尹勇刚, 孙艳, 贾楠, 郭紫娟, 赵胜建. 不同砧木与接穗组合对盐胁迫下的马瑟兰葡萄幼苗离子分布的影响[J]. 土壤通报, 2020, 51(1): 144–151. [20] 朱慧森, 方志红, 杨桂英, 赵祥, 董宽虎. 不同盐碱化草地披碱草生物量形成及根系对K+、Na+的选择性吸收[J]. 草地学报, 2010, 18(3): 383–387. [21] Frukh A, Siddiqi T O, Khan M I R, Ahmad A. Modulation in growth, biochemical attributes and proteome profile of rice cultivars under salt stress[J]. Plant Physiology and Biochemistry, 2020, 146: 55–70. [22] Huang Y, Fan G, Zhou D, Pang J. Phenotypic plasticity of four Chenopodiaceae species with contrasting saline-sodic tolerance in response to increased salinity-sodicity[J]. Ecology and Evolution, 2019, 9(4): 1545–1553. [23] 马剑, 刘贤德, 金铭, 刘建海, 赵国生, 范菊萍, 王艺林, 张虎. NaCl胁迫对文冠果幼苗生长性状的影响[J]. 中南林业科技大学学报, 2018, 38(1): 11–15. [24] Freschet G T, Swart E M, Cornelissen J H. Integrated plant phenotypic responses to contrasting above- and below-ground resources: key roles of specific leaf area and root mass fraction [J]. The New Phytologist, 2015, 206(4): 1247–1260. [25] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651–681. [26] Naeem M S, Warusawitharana H, Liu H, Liu D, Ahmad R, Waraich E A, Xu L, Zhou W. 5-aminolevulinic acid alleviates the salinity-induced changes in Brassica napus as revealed by the ultrastructural study of chloroplast[J]. Plant Physiology and Biochemistry, 2012, 57: 84–92. [27] 孔维萍, 程鸿, 岳宏忠. 镉胁迫对甜瓜幼苗叶片叶绿体超微结构及光合色素质量分数的影响[J]. 西北农业学报, 2020, 29(6): 935–941. [28] Shabala S, Bose J, Fuglsang A T, Pottosin I. On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils[J]. Journal of Experimental Botany, 2016, 67(4): 1015–1031. [29] Gierth M, M?ser P. Potassium transporters in plants-involvement in K+ acquisition, redistribution and homeostasis[J]. FEBS Letters, 2007, 581(12): 2348–2356. [30] Chattha W S, Patishtan J, Shafqat W, Maathuis F J M. Shoot potassium content provides a physiological marker to screen cotton genotypes for osmotic and salt tolerance[J]. International Journal of Phytoremediation, 2022, 24(4): 429–435. [31] Ghassemi-Golezani K, Farhangi-Abriz S. Foliar sprays of salicylic acid and jasmonic acid stimulate H+-ATPase activity of tonoplast, nutrient uptake and salt tolerance of soybean[J]. Ecotoxicology and Environmental Safety, 2018, 166: 18–25. [32] 李焕勇. NaCl处理对西伯利亚白刺幼苗中矿质元素含量的影响[J]. 植物生理学报, 2017, 53(12): 2125–2136. [33] 刘正祥, 魏琦, 张华新. 盐胁迫对沙枣幼苗不同部位矿质元素含量的影响[J]. 生态学杂志, 2017, 36(12): 3501–3509. [34] Borlotti A, Vigani G, Zocchi G. Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants[J]. BMC Plant Biologgy, 2012, 12: 189. [35] Rabhi M, Barhoumi Z, Ksouri R, Abdelly C, Gharsalli M. Interactive effects of salinity and iron deficiency in Medicago ciliaris[J]. Comptes Rendus Biologies, 2007, 330(11): 779–788. [36] Lanquar V, Ramos M S, Lelièvre F, Barbier-Brygoo H, Krieger-Liszkay A, Kr?mer U, Thomine S. Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency[J]. Plant Physiology, 2010, 152(4): 1986–1999. [37] Pilon M, Ravet K, Tapken W. The biogenesis and physiological function of chloroplast superoxide dismutases[J]. Biochimica et Biophysica Acta, 2011, 1807(8): 989–998. [38] Sun J, Sun Y, Ahmed R I, Ren A, Xie A M. Research progress on plant RING-finger proteins[J]. Genes (Basel), 2019, 10(12): 973. [39] Wang C, Chen L, Cai Z, Chen C, Liu Z, Liu S, Zou L, Tan M, Chen J, Liu X, Mei Y, Wei L, Liang J, Chen J. Metabolite profiling and transcriptome analysis explains difference in accumulation of bioactive constituents in licorice (Glycyrrhiza uralensis) under salt stress[J]. Frontiers in Plant Science, 2021, 12: 727882. [2] Ma Z, Liu M, Sun W, Huang L, Wu Q, Bu T, Li C, Chen H. Genome–wide identification and expression analysis of the trihelix transcription factor family in tartary buckwheat (Fagopyrum tataricum)[J]. BMC Plant Biology, 2019, 19(1): 344. [3] Kaplan-Levy R N, Brewer P B, Quon T, Smyth D R. The trihelix family of transcription factors––light, stress and development[J]. Trends in Plant Science, 2012, 17(3): 163–171. [4] Lampugnani E R, Kilinc A, Smyth D R. PETAL LOSS is a boundary gene that inhibits growth between developing sepals in Arabidopsis thaliana[J]. Plant Journal, 2012, 71(5): 724–735. [5] Du H, Huang M, Liu L. The genome wide analysis of GT transcription factors that respond to drought and waterlogging stresses in maize[J]. Euphytica, 2016, 208(1): 113–122. [6] Xi J, Qiu Y, Du L, Poovaiah B W. Plant-specific trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses[J]. Plant Science, 2012, 185–186: 274–280. [7] Yu C, Song L, Song J, Ouyang Bo, Guo L, Shang L, Wang T, Li H, Zhang J, Ye Z. ShCIGT, a Trihelix family gene, mediates cold and drought tolerance by interacting with SnRK1 in tomato[J]. Plant Science, 2018, 270: 140–149. [8] Qin Y, Ma X, Yu G, Wang Q, Wang L, Kong L, Kim W, Wang H W. Evolutionary history of trihelix family and their functional diversification[J]. DNA Research, 2014, 21(5): 499–510. [9] 周轲. 转BcICE1基因烟草抗逆性研究[D]. 兰州: 西北师范大学硕士学位论文, 2017. [10] 李晓旭, 郭存, 蒲文宣, 刘万峰, 张银霞, 孙楠, 何鑫玺, 刘成, 许良涛, 高军平. 普通烟草WOX转录因子家族的全基因组鉴定及分析[J]. 中国烟草学报, 2021, 27(1): 90–100. [11] Russo E T, Laio A, Punta M. Density Peak clustering of protein sequences associated to a Pfam clan reveals clear similarities and interesting differences with respect to manual family annotation[J]. BMC Bioinformatics, 2021, 22(1): 121. [12] Letunic I, Doerks T, Bork P. SMART 7: recent updates to the protein domain annotation resource[J]. Nucleic Acids Research, 2012, 40: D302–D305. [13] Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H. ExPASy: SIB bioinformatics resource portal[J]. Nucleic Acids Research, 2012, 40(Web Server issue): W597–W603. [14] Softberry, Inc. Softberry Releases 80 Free Bioinformatics Programs for Immediate Download by Academic Users[R]. Biotech Business Week, 2013. [15] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194–1202. [16] Li X, Guo C, Ahmad S, Wang Q, Yu J, Liu C, Guo Y. Systematic analysis of MYB family genes in potato and their multiple roles in development and stress responses[J]. Biomolecules, 2019, 9(8): 317. [17] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870–1874. [18] He Z, Zhang H, Gao S, Lercher M J, Chen W H, Hu S. Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees[J]. Nucleic Acids Research, 2016, 44(W1): W236–W241. [19] Chanhee K, Lorna H, Yuhan F, Dietmar K. Predicting hyperosmolality-inducible transcription factors using MEME tools[J]. The FASEB Journal, 2021, 35(S1): 4656. [20] Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis–acting regulatory DNA elements (PLACE) database: 1999[J]. Nucleic Acids Research, 1999, 27(1): 297–300. [21] Magwanga R O, Kirungu J N, Lu P, Yang X, Dong Q, Cai X, Xu Y, Wang X, Zhou Z, Hou Y, Nyunja R, Agong S G, Hua J, Zhang B, Wang K, Liu F. Genome wide identification of the trihelix transcription factors and overexpression of Gh_A05G2067 (GT-2), a novel gene contributing to increased drought and salt stresses tolerance in cotton[J]. Physiologia Plantarum, 2019, 167(3): 447–464. [22] Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana[J]. BMC Plant Biology, 2004, 4: 10. [23] Tang H, Bowers J E, Wang X, Ming R, Alam M, Paterson A H. Synteny and collinearity in plant genomes[J]. Science, 2008, 320(5875): 486–488. [24] Liu W, Zhang Y, Li W, Lin Y, Wang C, Xu R, Zhang L. Genome-wide characterization and expression analysis of soybean trihelix gene family[J]. PeerJ, 2020, 8: e8753. [25] O'Brien M, Kaplan-Levy R N, Quon T, Sappl P G, Smyth D R. PETAL LOSS, a trihelix transcription factor that represses growth in Arabidopsis thaliana, binds the energy-sensing SnRK1 kinase AKIN10[J]. Journal of Experimental Botany, 2015, 66(9): 2475–2485. [26] Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, Mcelver J, Aux G, Patton D, Meinke D. Identification of genes required for embryo development in Arabidopsis[J]. Plant Physiology, 2004, 135(3): 1206–1220. [27] Song J, Shen W Y, Shaheen S, Li Y Y, Liu Z R, Wang Z, Pang H B, Ahmed Z, Genome wide identification and analysis of the trihelix transcription factors in sunflower[J]. Biologia Plantarum, 2021, 65: 80–87. [28] Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez M M, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis[J]. Plant Cell, 2005, 17(12): 3470–3488. [29] White A J, Dunn M A, Katebrown, Hughes M A. Comparative analysis of genomic sequence and expression of a lipid transfer protein gene family in winter barley[J]. Journal of Experimental Botany, 1994, 45(12): 1885–1892. [30] Li J, Zhang M, Sun J, Mao X, Wang J, Wang J, Liu H, Zheng H, Zhen Z, Zhao H, Zou D. Genome-wide characterization and identification of trihelix transcription factor and expression profiling in response to abiotic stresses in rice (Oryza sativa L.)[J]. International Journal of Molecular Sciences, 2019, 20(2): 251. [2] Key A. Mediterranean diet and public health: personal reflections[J]. The American Journal of Clinical Nutrition, 1995,61(6S): 1321–1323. [3] Yusof S, Ghazali H M, King G S. Naringin content in local citrus fruits[J]. Food Chemistry, 1990(37): 113–121. [4] 蔡秉昌,赖宏亮. 台湾香檬果皮成分分析、抗氧化及抑制——氧化氮活性之研究[J]. 作物、环境与生物资讯, 2012(9): 41–56. [5] 张艳艳,卢艳花. 陈皮黄酮川陈皮素的分离纯化及抗炎止血作用研究[J]. 辽宁中医杂志, 2014,41(6): 1238–1239. [6] 张桂伟,张秋云,江东,席万鹏,周志钦. 中国主栽葡萄柚果肉酚类物质组成及其抗氧化活性[J]. 中国农业科学, 2015,48(9): 1785–1794. [7] 舒桥,冯皓. 肉桂醛交联壳聚糖微球的制备及对川陈皮素的控释研究[J]. 华中师范大学学报(自然科学版), 2018,52(6): 804–810. [8] 王秀琪,丁晓波,曾明. 川陈皮素对阿尔茨海默病的神经保护作用[J]. 重庆医学, 2014,22: 2948–2951. [9] Green C O, Asemota H N. Compositions and methods for managing adipocyte fat accumulation[P]. US: 20070088078, 2007-04-19. [10] 杨笛,蒋献. 川陈皮素治疗皮肤疾病的研究进展[J]. 华西药学杂志, 2016,31(1): 107–108. [11] 王景翔,于宏伟,胡瑞省. 川陈皮素研究进展[J]. 安徽农业科学, 2011,39(13): 7731–7733. [12] 赖瑞云,黄珺梅,林建忠,郑晓倩. 台湾香檬在厦门地区的引种初报[J]. 亚热带植物科学, 2018,47(3): 289–291. [13] 董发武,段玲慧,饶高雄,何红平. 橘叶化学成分的分离鉴定[J]. 中国实验方剂学杂志, 2018,24(21): 46–50. [14] Wu X, Song M, Gao Z, Sun Y, Wang M, Li F, Zheng J, Xiao H. Nobiletin and its colonic metabolites suppress colitis-associated colon carcinogenesis by down regulating iNOS, inducing antioxidative enzymes and arresting cell cycle progression[J]. Journal of Nutrition biochemistry, 2017,42: 17–25. [15] 张阳,姜华茂. 川陈皮素对人前列腺癌 DU145 细胞生长的抑制作用及其机制[J]. 吉林大学学报(医学版), 2020,46(6): 273–276. [16] Sousa D P, Pojo M, Pinto A T, Leite V, Serra A T. Nobiletin alone or in combination with cisplatin decreases the viability of anaplastic thyroid cancer cell lines[J]. Nutrition and Cancer, 2020,72(2): 352–363. [17] Goan Y G, Wu W T, Liu C I, Neoh C A, Wu Y J. Involvement of mitochondrial dysfunction, endoplasmic reticulum stress, and the PI3K/AKT/mTOR pathway in nobiletin-induced apoptosis of human bladder cancer cells[J]. Molecules, 2019,24(16): 2881. [18] Wei D, Zhang G, Zhu Z, Y Zheng, Yan F, Pan C, Wang Z, Li X, Wang F, Meng P. Nobiletin inhibits cell viability via the SRC/AKT/STAT3/YY1AP1 pathway in human renal carcinoma cells[J]. Frontiers in Pharmacology, 2019(10): 690. [19] heng G D, Hu P J, Chao Y X, Zhou Y, Cai Y. Nobiletin induces growth inhibition and apoptosis in human nasopharyngeal carcinoma C666-1 cells through regulating PARP-2/SIRT1/AMPK signaling pathway[J]. Food Science and Nutrition, 2019,7(3): 1104–1112. [20] 侯春宁,张雪松,李国林. 川陈皮素对口腔鳞状细胞癌细胞Cal-27增殖、迁移和侵袭的影响[J]. 口腔医学, 2018,38(6): 481–484. |
[1] | 黄晓龙, 欧成川, 刘晓丽, 黎秋芬, 李真琴, 李思彤, 王俊宁. 空心菜9份种质萌发期耐盐性筛选及评价[J]. 亚热带植物科学, 2023, 52(2): 108-118. |
[2] | 雷 刚, 廉 云, 刘金亮. 氮磷钾配施对烤烟苗期生长的影响[J]. 亚热带植物科学, 2022, 51(5): 351-361. |
[3] | 覃杰明,何含杰,张党权,陈丽莉,刘欢. 6-BA和GA3对盐胁迫下红杆铁皮石斛幼苗生理生化影响[J]. 亚热带植物科学, 2016, 45(01): 27-31. |
[4] | 王振,丁印龙,董怡然,杨盛昌. 三角梅对盐胁迫的响应研究[J]. 亚热带植物科学, 2015, 44(02): 91-95. |
[5] | 刘剑斌. 闽北不同立地类型的邓恩桉生长特性调查[J]. 亚热带植物科学, 2015, 44(01): 47-51. |
[6] | 郭祥泉,周立华,熊自华,孙晓冬,郭祥堆,吴载璋,林建丽,郑经池,彭小勇. 孑遗树种钟萼木幼树生长特性探讨[J]. 亚热带植物科学, 2012, 41(02): 32-36. |
[7] | 郭祥泉,李延群,孙晓冬,熊自华,郭祥堆,杨培华,詹玉莲,许云亮. 应用“t”检验选择法筛选钟萼木幼树优株的探讨[J]. 亚热带植物科学, 2011, 40(04): 38-42. |
[8] | 尹明华,洪森荣,罗建民. 盐胁迫对黄独脱毒苗生长和若干生理生化指标的影响[J]. 亚热带植物科学, 2009, 38(04): 15-17. |
[9] | 张雪芹,欧阳海波. 盐胁迫下甜菜碱的生物合成及植物耐盐的分子机制[J]. 亚热带植物科学, 2009, 38(03): 73-78. |
[10] | 杨涛,严重玲,梁洁,李裕红,汤惠华. 盐胁迫下木麻黄幼树营养元素的分配规律[J]. 亚热带植物科学, 2003, 32(03): 1-4. |
[11] | 陈东华. 不同间伐措施对乳源木莲生长的影响[J]. 亚热带植物科学, 2002, 31(02): 13-17,24. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||