亚热带植物科学 ›› 2022, Vol. 51 ›› Issue (3): 163-171.DOI: 10.3969/j.issn.1009-7791.2022.03.001
• 植物生理生化与分子生物学 • 下一篇
梁永鑫,吴劲松*
收稿日期:
2022-04-25
接受日期:
2022-05-30
出版日期:
2022-06-30
发布日期:
2022-10-17
通讯作者:
吴劲松
基金资助:
LIANG Yong-xin, WU Jin-song*
Received:
2022-04-25
Accepted:
2022-05-30
Online:
2022-06-30
Published:
2022-10-17
Contact:
WU Jin-song
摘要: 渐狭叶烟草(Nicotiana attenuata)是烟草属植物中研究植物与昆虫、植物与病原菌互作的模式植物。本研究以八氢番茄红素脱氢酶基因(PDS)为靶标基因,建立一套以pHSE401为基因编辑载体,以潮霉素为抗性筛选标记的渐狭叶烟草高效基因编辑体系。利用该体系,获得PDS基因约80%的基因编辑效率,远远超过目前在渐狭叶烟草中报道的约30%的基因编辑效率。进一步使用WRKY70基因为靶标,对该体系对进行编辑效率验证,经测序发现WRKY70基因编辑材料中的基因编辑效率为83%,其中发生大片段缺失突变的频率为50%。因此,本研究成功建立了渐狭叶烟草高效基因编辑体系,为以后渐狭叶烟草的基因功能研究奠定基础。
中图分类号:
梁永鑫,吴劲松. 渐狭叶烟草高效基因编辑体系的建立[J]. 亚热带植物科学, 2022, 51(3): 163-171.
LIANG Yong-xin, WU Jin-song. Establishment of a High Efficient Gene Editing System for Nicotiana attenuata[J]. Subtropical Plant Science, 2022, 51(3): 163-171.
[1] Sharifi-Rad M, Roberts T H, Matthews K R, Bezerra C F, Morais-Braga M F B, Coutinho H D M, Sharopov F, Salehi B, Yousaf Z, Sharifi-Rad M, Del Mar Contreras M, Varoni E M, Verma D R, Iriti M, Sharifi-[1] 赵陆滟, 李荣平, 吴劲松. 渐狭叶烟草组培苗生根条件优化及在基因转化中的应用[J]. 亚热带植物科学, 2021, 50(3): 175–181. [2] Wu J, Baldwini T. New insights into plant responses to the attack from insect herbivores[J]. Annual Review of Genetics, 2010, 44: 1–24. [3] Long J, Yang M, Zuo C, Song N, He J, Zeng J, Wu J. Requirement of jasmonate signaling for defense responses against Alternaria alternata and Phytophthora nicotiane in tobacco[J]. Crop Science, 2021, 61(6): 4273–4283. [4] Lu R, Martin-Hernandez A M, Peart J R, Malcuit I, Baulcombe D C. Virus-induced gene silencing in plants[J]. Methods, 2003, 30(4): 296–303. [5] Mohr S, Bakal C, Perrimon N. Genomic screening with RNAi: results and challenges[J]. Annual Review Biochemistry, 2010, 79: 37–64. [6] Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto Y Y, Sieburth L, Voinnet O. Widespread translational inhibition by plant miRNAs and siRNAs[J]. Science, 2008, 320(5880): 1185–1190. [7] Becker A, Lange M. VIGS - genomics goes functional[J]. Trends in Plant Science, 2010, 15(1): 1–4. [8] Yin M, Song N, Chen S, Wu J. NaKTI2, a Kunitz trypsin inhibitor transcriptionally regulated by NaWRKY3 and NaWRKY6, is required for herbivore resistance in Nicotiana attenuata[J]. Plant Cell Reports, 2021, 40(1): 97–109. [9] Xu Z, Song N, Ma L, Wu J. IRE1-bZIP60 pathway is required for Nicotiana attenuata resistance to fungal pathogen Alternaria alternata[J]. Frontiers in Plant Science, 2019, 10: 263. [10] Song N, Ma L, Wang W, Sun H, Wang L, Baldwin I, Wu J. An ERF2-like transcription factor regulates production of the defense sesquiterpene capsidiol upon Alternaria alternata infection[J]. Journal of Experimental Botany, 2019, 70(20): 5895–5908. [11] Sun H, Song N, Ma L, Li J, Wu J. Ethylene signalling is essential for the resistance of Nicotiana attenuata against Alternaria alternata and phytoalexin scopoletin biosynthesis[J]. Plant Pathology, 2017, 66(2): 277–284. [12] Sun H, Wang L, Zhang B, Ma J, Hettenhausen C, Cao G, Sun G, Wu J Q, Wu J S. Scopoletin is a phytoalexin against Alternaria alternata in wild tobacco dependent on jasmonate signalling[J]. Journal of Experimental Botany, 2014, 65(15): 4305–4315. [13] Wu J, Wang L, Baldwin I T. Methyl jasmonate-elicited herbivore resistance: does MeJA function as a signal without being hydrolyzed to JA? [J]. Planta, 2008, 227(5): 1161–1168. [14] Lotfi A, Pervaiz T, Jiu S T, Faghihi F, Jahanbakhshian Z, Khorzoghi E G, Fang J G, Seyedi S M. Role of microRNAs and their target genes in salinity response in plants[J]. Plant Growth Regulation, 2017, 82(3): 377–390. [15] Zhang C, Ruvkun G. New insights into siRNA amplification and RNAi[J]. RNA Biology, 2012, 9(8): 1045–1049. [16] Brantl S. Antisense-RNA regulation and RNA interference[J]. BBA–Gene Structure and Expression, 2002, 1575(1–3): 15–25. [17] Wu J, Kurten E L, Monshausen G, Hummel G M, Gilroy S, Baldwin I T. NaRALF, A peptide signal essential for the regulation of root hair tip apoplastic pH in Nicotiana attenuata, is required for root hair development and plant growth in native soils[J]. The Plant Journal, 2007, 52(5): 877–890. [18] Mahfouz M M, Li L X, Shamimuzzaman M, Wibowo A, Fang X Y, Zhu J K. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks[J]. Proceedings of the National Academy of Sciencesof the United States of America, 2011, 108(6): 2623–2628. [19] Kim H, Kim S T, Ryu J, Choi M K, Kweon J, Kang B C, Ahn H M, Bae S, Kim J, Kim J S. A simple, flexible and high-throughput cloning system for plant genome editing via CRISPR-Cas system[J]. Journal of Integrative Plant Biology, 2016, 58(8): 705–712. [20] 席海秀, 李洪艳, 佟少明. 植物八氢番茄红素脱氢酶(PDS)基因保守结构域模式与系统进化分析[J]. 植物生理学报, 2013, 49(12): 1407–1412. [21] Xing H L, Dong L, Wang Z P, Zhang H Y, Han C Y, Liu B, Wang X C, Chen Q J. A CRISPR/Cas9 toolkit for multiplex genome editing in plants[J]. BMC Plant Biology, 2014, 14: 327. [22] Zuluaga D L, Gonzali S, Loreti E, Pucciariello C, Degllnnocenti E, Guidi L, Alpi A, Perata P. Arabidopsis thaliana MYB75/PAP1 transcription factor induces anthocyanin production in transgenic tomato plants[J]. Functional Plant Biology, 2008, 35(7): 606–618. [23] Oh Y, Kim S G. RPS5A Promoter-driven Cas9 produces heritable virus-induced genome editing in Nicotiana attenuata[J]. Mol Cells, 2021, 44(12): 911–919. [2] 国家药典委员会. 中华人民共和国药典.一部[S]. 北京: 中国医药科技出版社, 2020: 367. [3] 乔永刚, 王勇飞, 曹亚萍, 贺嘉欣, 贾孟君, 李政, 张鑫瑞, 宋芸. 药用蒲公英低温和高温胁迫下内参基因筛选与相关基因表达分析[J]. 园艺学报, 2020, 47(6): 1153–1164. [4] Nan L, Guo Q, Cao S. Archaeal community diversity in different types of saline-alkali soil in arid regions of Northwest China[J]. Journal of Bioscience and Bioengineering, 2020, 130(4): 382–389. [5] 付娆, 张海洋, 梁晓艳, 顾寅钰, 邢延富, 宋延静, 李萌, 李茹霞, 王向誉, 郭洪恩. 蒲公英对NaCl单盐和海水复合盐胁迫的生理响应[J]. 山东农业科学, 2020, 52(2): 33–37. [6] Gamalero E, Bona E, Todeschini V, Lingua G. Saline and arid soils: Impact on bacteria, plants, and their interaction[J]. Biology (Basel), 2020, 9(6): 116. [7] Soni S, Kumar A, Sehrawat N, Kumar A, Kumar N, Lata C, Mann A. Effect of saline irrigation on plant water traits, photosynthesis and ionic balance in durum wheat genotypes[J]. Saudi Journal of Biological Sciences, 2021, 28(4): 2510–2517. [8] Hasanuzzaman M, Raihan M R H, Masud A A C, Rahman K, Nowroz F, Rahman M, Nahar K, Fujita M. Regulation of reactive oxygen species and antioxidant defense in plants under salinity[J]. International Journal of Molecular Sciences, 2021, 22(17): 9326. [9] Goussi R, Manaa A, Derbali W, Cantamessa S, Abdelly C, Barbato R. Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in Thellungiella salsuginea[J]. Journal of Photochemistry and Photobiology B: Biology, 2018, 183: 275–287. [10] Ran X, Wang X, Gao X, Liang H, Liu B, Huang X. Effects of salt stress on the photosynthetic physiology and mineral ion absorption and distribution in white willow (Salix alba L.)[J]. PLoS One, 2021, 16(11): e0260086. [11] Ahmed U, Rao M J, Qi C, Xie Q, Noushahi H A, Yaseen M, Shi X, Zheng B. Expression profiling of flavonoid biosynthesis genes and secondary metabolites accumulation in populus under drought stress[J]. Molecules, 2021, 26(18): 1–17. [12] Bhattacharya A, Sood P, Citovsky V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection[J]. Molecular Plant Pathology, 2010, 11(5): 705–719. [13] Zuo Z, Weraduwage S M, Lantz A T, Sanchez L M, Weise S E, Wang J, Childs K L, Sharkey T D. Isoprene acts as a signaling molecule in gene networks important for stress responses and plant growth[J]. Plant Physiology, 2019, 180(1): 124–152. [14] Cai Z, Liu X, Chen H, Yang R, Chen J, Zou L, Wang C, Chen J, Tan M, Mei Y, Wei L. Variations in morphology, physiology, and multiple bioactive constituents of Lonicerae Japonicae Flos under salt stress[J]. Scientific Reports, 2021, 11(1): 3939. [15] 刘强, 周晓梅, 王占武. NaCl处理对曼陀罗幼苗生长、光合、离子积累及抗氧化系统的影响[J]. 东北林业大学学报, 2021, 49(1): 33–37. [16] Tounsi S, Feki K, Hmidi D, Masmoudi K, Brini F. Salt stress reveals differential physiological, biochemical and molecular responses in T. monococcum and T. durum wheat genotypes[J]. Physiology and Molecular Biology of Plants, 2017, 23(3): 517–528. [17] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 134–137. [18] Bejaoui F, Salas J J, Nouairi I, Smaoui A, Abdelly C, Martínez-Force E, Youssef N B. Changes in chloroplast lipid contents and chloroplast ultrastructure in Sulla carnosa and Sulla coronaria leaves under salt stress[J]. Journal of Plant Physiology, 2016, 198: 32–38. [19] 袁军伟, 李敏敏, 刘长江, 韩斌, 尹勇刚, 孙艳, 贾楠, 郭紫娟, 赵胜建. 不同砧木与接穗组合对盐胁迫下的马瑟兰葡萄幼苗离子分布的影响[J]. 土壤通报, 2020, 51(1): 144–151. [20] 朱慧森, 方志红, 杨桂英, 赵祥, 董宽虎. 不同盐碱化草地披碱草生物量形成及根系对K+、Na+的选择性吸收[J]. 草地学报, 2010, 18(3): 383–387. [21] Frukh A, Siddiqi T O, Khan M I R, Ahmad A. Modulation in growth, biochemical attributes and proteome profile of rice cultivars under salt stress[J]. Plant Physiology and Biochemistry, 2020, 146: 55–70. [22] Huang Y, Fan G, Zhou D, Pang J. Phenotypic plasticity of four Chenopodiaceae species with contrasting saline-sodic tolerance in response to increased salinity-sodicity[J]. Ecology and Evolution, 2019, 9(4): 1545–1553. [23] 马剑, 刘贤德, 金铭, 刘建海, 赵国生, 范菊萍, 王艺林, 张虎. NaCl胁迫对文冠果幼苗生长性状的影响[J]. 中南林业科技大学学报, 2018, 38(1): 11–15. [24] Freschet G T, Swart E M, Cornelissen J H. Integrated plant phenotypic responses to contrasting above- and below-ground resources: key roles of specific leaf area and root mass fraction [J]. The New Phytologist, 2015, 206(4): 1247–1260. [25] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651–681. [26] Naeem M S, Warusawitharana H, Liu H, Liu D, Ahmad R, Waraich E A, Xu L, Zhou W. 5-aminolevulinic acid alleviates the salinity-induced changes in Brassica napus as revealed by the ultrastructural study of chloroplast[J]. Plant Physiology and Biochemistry, 2012, 57: 84–92. [27] 孔维萍, 程鸿, 岳宏忠. 镉胁迫对甜瓜幼苗叶片叶绿体超微结构及光合色素质量分数的影响[J]. 西北农业学报, 2020, 29(6): 935–941. [28] Shabala S, Bose J, Fuglsang A T, Pottosin I. On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils[J]. Journal of Experimental Botany, 2016, 67(4): 1015–1031. [29] Gierth M, M?ser P. Potassium transporters in plants-involvement in K+ acquisition, redistribution and homeostasis[J]. FEBS Letters, 2007, 581(12): 2348–2356. [30] Chattha W S, Patishtan J, Shafqat W, Maathuis F J M. Shoot potassium content provides a physiological marker to screen cotton genotypes for osmotic and salt tolerance[J]. International Journal of Phytoremediation, 2022, 24(4): 429–435. [31] Ghassemi-Golezani K, Farhangi-Abriz S. Foliar sprays of salicylic acid and jasmonic acid stimulate H+-ATPase activity of tonoplast, nutrient uptake and salt tolerance of soybean[J]. Ecotoxicology and Environmental Safety, 2018, 166: 18–25. [32] 李焕勇. NaCl处理对西伯利亚白刺幼苗中矿质元素含量的影响[J]. 植物生理学报, 2017, 53(12): 2125–2136. [33] 刘正祥, 魏琦, 张华新. 盐胁迫对沙枣幼苗不同部位矿质元素含量的影响[J]. 生态学杂志, 2017, 36(12): 3501–3509. [34] Borlotti A, Vigani G, Zocchi G. Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants[J]. BMC Plant Biologgy, 2012, 12: 189. [35] Rabhi M, Barhoumi Z, Ksouri R, Abdelly C, Gharsalli M. Interactive effects of salinity and iron deficiency in Medicago ciliaris[J]. Comptes Rendus Biologies, 2007, 330(11): 779–788. [36] Lanquar V, Ramos M S, Lelièvre F, Barbier-Brygoo H, Krieger-Liszkay A, Kr?mer U, Thomine S. Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency[J]. Plant Physiology, 2010, 152(4): 1986–1999. [37] Pilon M, Ravet K, Tapken W. The biogenesis and physiological function of chloroplast superoxide dismutases[J]. Biochimica et Biophysica Acta, 2011, 1807(8): 989–998. [38] Sun J, Sun Y, Ahmed R I, Ren A, Xie A M. Research progress on plant RING-finger proteins[J]. Genes (Basel), 2019, 10(12): 973. [39] Wang C, Chen L, Cai Z, Chen C, Liu Z, Liu S, Zou L, Tan M, Chen J, Liu X, Mei Y, Wei L, Liang J, Chen J. Metabolite profiling and transcriptome analysis explains difference in accumulation of bioactive constituents in licorice (Glycyrrhiza uralensis) under salt stress[J]. Frontiers in Plant Science, 2021, 12: 727882. [1] Sharifi-Rad M, Roberts T H, Matthews K R, Bezerra C F, Morais-Braga M F B, Coutinho H D M, Sharopov F, Salehi B, Yousaf Z, Sharifi-Rad M, Del Mar Contreras M, Varoni E M, Verma D R, Iriti M, Sharifi-Rad J. Ethnobotany of the genus Taraxacum–Phytochemicals and antimicrobial activity[J]. Phytotherapy Research, 2018, 32(11): 2131–2145. [2] 国家药典委员会. 中华人民共和国药典.一部[S]. 北京: 中国医药科技出版社, 2020: 367. [3] 乔永刚, 王勇飞, 曹亚萍, 贺嘉欣, 贾孟君, 李政, 张鑫瑞, 宋芸. 药用蒲公英低温和高温胁迫下内参基因筛选与相关基因表达分析[J]. 园艺学报, 2020, 47(6): 1153–1164. [4] Nan L, Guo Q, Cao S. Archaeal community diversity in different types of saline-alkali soil in arid regions of Northwest China[J]. Journal of Bioscience and Bioengineering, 2020, 130(4): 382–389. [5] 付娆, 张海洋, 梁晓艳, 顾寅钰, 邢延富, 宋延静, 李萌, 李茹霞, 王向誉, 郭洪恩. 蒲公英对NaCl单盐和海水复合盐胁迫的生理响应[J]. 山东农业科学, 2020, 52(2): 33–37. [6] Gamalero E, Bona E, Todeschini V, Lingua G. Saline and arid soils: Impact on bacteria, plants, and their interaction[J]. Biology (Basel), 2020, 9(6): 116. [7] Soni S, Kumar A, Sehrawat N, Kumar A, Kumar N, Lata C, Mann A. Effect of saline irrigation on plant water traits, photosynthesis and ionic balance in durum wheat genotypes[J]. Saudi Journal of Biological Sciences, 2021, 28(4): 2510–2517. [8] Hasanuzzaman M, Raihan M R H, Masud A A C, Rahman K, Nowroz F, Rahman M, Nahar K, Fujita M. Regulation of reactive oxygen species and antioxidant defense in plants under salinity[J]. International Journal of Molecular Sciences, 2021, 22(17): 9326. [9] Goussi R, Manaa A, Derbali W, Cantamessa S, Abdelly C, Barbato R. Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in Thellungiella salsuginea[J]. Journal of Photochemistry and Photobiology B: Biology, 2018, 183: 275–287. [10] Ran X, Wang X, Gao X, Liang H, Liu B, Huang X. Effects of salt stress on the photosynthetic physiology and mineral ion absorption and distribution in white willow (Salix alba L.)[J]. PLoS One, 2021, 16(11): e0260086. [11] Ahmed U, Rao M J, Qi C, Xie Q, Noushahi H A, Yaseen M, Shi X, Zheng B. Expression profiling of flavonoid biosynthesis genes and secondary metabolites accumulation in populus under drought stress[J]. Molecules, 2021, 26(18): 1–17. [12] Bhattacharya A, Sood P, Citovsky V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection[J]. Molecular Plant Pathology, 2010, 11(5): 705–719. [13] Zuo Z, Weraduwage S M, Lantz A T, Sanchez L M, Weise S E, Wang J, Childs K L, Sharkey T D. Isoprene acts as a signaling molecule in gene networks important for stress responses and plant growth[J]. Plant Physiology, 2019, 180(1): 124–152. [14] Cai Z, Liu X, Chen H, Yang R, Chen J, Zou L, Wang C, Chen J, Tan M, Mei Y, Wei L. Variations in morphology, physiology, and multiple bioactive constituents of Lonicerae Japonicae Flos under salt stress[J]. Scientific Reports, 2021, 11(1): 3939. [15] 刘强, 周晓梅, 王占武. NaCl处理对曼陀罗幼苗生长、光合、离子积累及抗氧化系统的影响[J]. 东北林业大学学报, 2021, 49(1): 33–37. [16] Tounsi S, Feki K, Hmidi D, Masmoudi K, Brini F. Salt stress reveals differential physiological, biochemical and molecular responses in T. monococcum and T. durum wheat genotypes[J]. Physiology and Molecular Biology of Plants, 2017, 23(3): 517–528. [17] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 134–137. [18] Bejaoui F, Salas J J, Nouairi I, Smaoui A, Abdelly C, Martínez-Force E, Youssef N B. Changes in chloroplast lipid contents and chloroplast ultrastructure in Sulla carnosa and Sulla coronaria leaves under salt stress[J]. Journal of Plant Physiology, 2016, 198: 32–38. [19] 袁军伟, 李敏敏, 刘长江, 韩斌, 尹勇刚, 孙艳, 贾楠, 郭紫娟, 赵胜建. 不同砧木与接穗组合对盐胁迫下的马瑟兰葡萄幼苗离子分布的影响[J]. 土壤通报, 2020, 51(1): 144–151. [20] 朱慧森, 方志红, 杨桂英, 赵祥, 董宽虎. 不同盐碱化草地披碱草生物量形成及根系对K+、Na+的选择性吸收[J]. 草地学报, 2010, 18(3): 383–387. [21] Frukh A, Siddiqi T O, Khan M I R, Ahmad A. Modulation in growth, biochemical attributes and proteome profile of rice cultivars under salt stress[J]. Plant Physiology and Biochemistry, 2020, 146: 55–70. [22] Huang Y, Fan G, Zhou D, Pang J. Phenotypic plasticity of four Chenopodiaceae species with contrasting saline-sodic tolerance in response to increased salinity-sodicity[J]. Ecology and Evolution, 2019, 9(4): 1545–1553. [23] 马剑, 刘贤德, 金铭, 刘建海, 赵国生, 范菊萍, 王艺林, 张虎. NaCl胁迫对文冠果幼苗生长性状的影响[J]. 中南林业科技大学学报, 2018, 38(1): 11–15. [24] Freschet G T, Swart E M, Cornelissen J H. Integrated plant phenotypic responses to contrasting above- and below-ground resources: key roles of specific leaf area and root mass fraction [J]. The New Phytologist, 2015, 206(4): 1247–1260. [25] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651–681. [26] Naeem M S, Warusawitharana H, Liu H, Liu D, Ahmad R, Waraich E A, Xu L, Zhou W. 5-aminolevulinic acid alleviates the salinity-induced changes in Brassica napus as revealed by the ultrastructural study of chloroplast[J]. Plant Physiology and Biochemistry, 2012, 57: 84–92. [27] 孔维萍, 程鸿, 岳宏忠. 镉胁迫对甜瓜幼苗叶片叶绿体超微结构及光合色素质量分数的影响[J]. 西北农业学报, 2020, 29(6): 935–941. [28] Shabala S, Bose J, Fuglsang A T, Pottosin I. On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils[J]. Journal of Experimental Botany, 2016, 67(4): 1015–1031. [29] Gierth M, M?ser P. Potassium transporters in plants-involvement in K+ acquisition, redistribution and homeostasis[J]. FEBS Letters, 2007, 581(12): 2348–2356. [30] Chattha W S, Patishtan J, Shafqat W, Maathuis F J M. Shoot potassium content provides a physiological marker to screen cotton genotypes for osmotic and salt tolerance[J]. International Journal of Phytoremediation, 2022, 24(4): 429–435. [31] Ghassemi-Golezani K, Farhangi-Abriz S. Foliar sprays of salicylic acid and jasmonic acid stimulate H+-ATPase activity of tonoplast, nutrient uptake and salt tolerance of soybean[J]. Ecotoxicology and Environmental Safety, 2018, 166: 18–25. [32] 李焕勇. NaCl处理对西伯利亚白刺幼苗中矿质元素含量的影响[J]. 植物生理学报, 2017, 53(12): 2125–2136. [33] 刘正祥, 魏琦, 张华新. 盐胁迫对沙枣幼苗不同部位矿质元素含量的影响[J]. 生态学杂志, 2017, 36(12): 3501–3509. [34] Borlotti A, Vigani G, Zocchi G. Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants[J]. BMC Plant Biologgy, 2012, 12: 189. [35] Rabhi M, Barhoumi Z, Ksouri R, Abdelly C, Gharsalli M. Interactive effects of salinity and iron deficiency in Medicago ciliaris[J]. Comptes Rendus Biologies, 2007, 330(11): 779–788. [36] Lanquar V, Ramos M S, Lelièvre F, Barbier-Brygoo H, Krieger-Liszkay A, Kr?mer U, Thomine S. Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency[J]. Plant Physiology, 2010, 152(4): 1986–1999. [37] Pilon M, Ravet K, Tapken W. The biogenesis and physiological function of chloroplast superoxide dismutases[J]. Biochimica et Biophysica Acta, 2011, 1807(8): 989–998. [38] Sun J, Sun Y, Ahmed R I, Ren A, Xie A M. Research progress on plant RING-finger proteins[J]. Genes (Basel), 2019, 10(12): 973. [39] Wang C, Chen L, Cai Z, Chen C, Liu Z, Liu S, Zou L, Tan M, Chen J, Liu X, Mei Y, Wei L, Liang J, Chen J. Metabolite profiling and transcriptome analysis explains difference in accumulation of bioactive constituents in licorice (Glycyrrhiza uralensis) under salt stress[J]. Frontiers in Plant Science, 2021, 12: 727882. [2] Ma Z, Liu M, Sun W, Huang L, Wu Q, Bu T, Li C, Chen H. Genome–wide identification and expression analysis of the trihelix transcription factor family in tartary buckwheat (Fagopyrum tataricum)[J]. BMC Plant Biology, 2019, 19(1): 344. [3] Kaplan-Levy R N, Brewer P B, Quon T, Smyth D R. The trihelix family of transcription factors––light, stress and development[J]. Trends in Plant Science, 2012, 17(3): 163–171. [4] Lampugnani E R, Kilinc A, Smyth D R. PETAL LOSS is a boundary gene that inhibits growth between developing sepals in Arabidopsis thaliana[J]. Plant Journal, 2012, 71(5): 724–735. [5] Du H, Huang M, Liu L. The genome wide analysis of GT transcription factors that respond to drought and waterlogging stresses in maize[J]. Euphytica, 2016, 208(1): 113–122. [6] Xi J, Qiu Y, Du L, Poovaiah B W. Plant-specific trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses[J]. Plant Science, 2012, 185–186: 274–280. [7] Yu C, Song L, Song J, Ouyang Bo, Guo L, Shang L, Wang T, Li H, Zhang J, Ye Z. ShCIGT, a Trihelix family gene, mediates cold and drought tolerance by interacting with SnRK1 in tomato[J]. Plant Science, 2018, 270: 140–149. [8] Qin Y, Ma X, Yu G, Wang Q, Wang L, Kong L, Kim W, Wang H W. Evolutionary history of trihelix family and their functional diversification[J]. DNA Research, 2014, 21(5): 499–510. [9] 周轲. 转BcICE1基因烟草抗逆性研究[D]. 兰州: 西北师范大学硕士学位论文, 2017. [10] 李晓旭, 郭存, 蒲文宣, 刘万峰, 张银霞, 孙楠, 何鑫玺, 刘成, 许良涛, 高军平. 普通烟草WOX转录因子家族的全基因组鉴定及分析[J]. 中国烟草学报, 2021, 27(1): 90–100. [11] Russo E T, Laio A, Punta M. Density Peak clustering of protein sequences associated to a Pfam clan reveals clear similarities and interesting differences with respect to manual family annotation[J]. BMC Bioinformatics, 2021, 22(1): 121. [12] Letunic I, Doerks T, Bork P. SMART 7: recent updates to the protein domain annotation resource[J]. Nucleic Acids Research, 2012, 40: D302–D305. [13] Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H. ExPASy: SIB bioinformatics resource portal[J]. Nucleic Acids Research, 2012, 40(Web Server issue): W597–W603. [14] Softberry, Inc. Softberry Releases 80 Free Bioinformatics Programs for Immediate Download by Academic Users[R]. Biotech Business Week, 2013. [15] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194–1202. [16] Li X, Guo C, Ahmad S, Wang Q, Yu J, Liu C, Guo Y. Systematic analysis of MYB family genes in potato and their multiple roles in development and stress responses[J]. Biomolecules, 2019, 9(8): 317. [17] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870–1874. [18] He Z, Zhang H, Gao S, Lercher M J, Chen W H, Hu S. Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees[J]. Nucleic Acids Research, 2016, 44(W1): W236–W241. [19] Chanhee K, Lorna H, Yuhan F, Dietmar K. Predicting hyperosmolality-inducible transcription factors using MEME tools[J]. The FASEB Journal, 2021, 35(S1): 4656. [20] Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis–acting regulatory DNA elements (PLACE) database: 1999[J]. Nucleic Acids Research, 1999, 27(1): 297–300. [21] Magwanga R O, Kirungu J N, Lu P, Yang X, Dong Q, Cai X, Xu Y, Wang X, Zhou Z, Hou Y, Nyunja R, Agong S G, Hua J, Zhang B, Wang K, Liu F. Genome wide identification of the trihelix transcription factors and overexpression of Gh_A05G2067 (GT-2), a novel gene contributing to increased drought and salt stresses tolerance in cotton[J]. Physiologia Plantarum, 2019, 167(3): 447–464. [22] Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana[J]. BMC Plant Biology, 2004, 4: 10. [23] Tang H, Bowers J E, Wang X, Ming R, Alam M, Paterson A H. Synteny and collinearity in plant genomes[J]. Science, 2008, 320(5875): 486–488. [24] Liu W, Zhang Y, Li W, Lin Y, Wang C, Xu R, Zhang L. Genome-wide characterization and expression analysis of soybean trihelix gene family[J]. PeerJ, 2020, 8: e8753. [25] O'Brien M, Kaplan-Levy R N, Quon T, Sappl P G, Smyth D R. PETAL LOSS, a trihelix transcription factor that represses growth in Arabidopsis thaliana, binds the energy-sensing SnRK1 kinase AKIN10[J]. Journal of Experimental Botany, 2015, 66(9): 2475–2485. [26] Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, Mcelver J, Aux G, Patton D, Meinke D. Identification of genes required for embryo development in Arabidopsis[J]. Plant Physiology, 2004, 135(3): 1206–1220. [27] Song J, Shen W Y, Shaheen S, Li Y Y, Liu Z R, Wang Z, Pang H B, Ahmed Z, Genome wide identification and analysis of the trihelix transcription factors in sunflower[J]. Biologia Plantarum, 2021, 65: 80–87. [28] Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez M M, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis[J]. Plant Cell, 2005, 17(12): 3470–3488. [29] White A J, Dunn M A, Katebrown, Hughes M A. Comparative analysis of genomic sequence and expression of a lipid transfer protein gene family in winter barley[J]. Journal of Experimental Botany, 1994, 45(12): 1885–1892. [30] Li J, Zhang M, Sun J, Mao X, Wang J, Wang J, Liu H, Zheng H, Zhen Z, Zhao H, Zou D. Genome-wide characterization and identification of trihelix transcription factor and expression profiling in response to abiotic stresses in rice (Oryza sativa L.)[J]. International Journal of Molecular Sciences, 2019, 20(2): 251. [2] Key A. Mediterranean diet and public health: personal reflections[J]. The American Journal of Clinical Nutrition, 1995,61(6S): 1321–1323. [3] Yusof S, Ghazali H M, King G S. Naringin content in local citrus fruits[J]. Food Chemistry, 1990(37): 113–121. [4] 蔡秉昌,赖宏亮. 台湾香檬果皮成分分析、抗氧化及抑制——氧化氮活性之研究[J]. 作物、环境与生物资讯, 2012(9): 41–56. [5] 张艳艳,卢艳花. 陈皮黄酮川陈皮素的分离纯化及抗炎止血作用研究[J]. 辽宁中医杂志, 2014,41(6): 1238–1239. [6] 张桂伟,张秋云,江东,席万鹏,周志钦. 中国主栽葡萄柚果肉酚类物质组成及其抗氧化活性[J]. 中国农业科学, 2015,48(9): 1785–1794. [7] 舒桥,冯皓. 肉桂醛交联壳聚糖微球的制备及对川陈皮素的控释研究[J]. 华中师范大学学报(自然科学版), 2018,52(6): 804–810. [8] 王秀琪,丁晓波,曾明. 川陈皮素对阿尔茨海默病的神经保护作用[J]. 重庆医学, 2014,22: 2948–2951. [9] Green C O, Asemota H N. Compositions and methods for managing adipocyte fat accumulation[P]. US: 20070088078, 2007-04-19. [10] 杨笛,蒋献. 川陈皮素治疗皮肤疾病的研究进展[J]. 华西药学杂志, 2016,31(1): 107–108. [11] 王景翔,于宏伟,胡瑞省. 川陈皮素研究进展[J]. 安徽农业科学, 2011,39(13): 7731–7733. [12] 赖瑞云,黄珺梅,林建忠,郑晓倩. 台湾香檬在厦门地区的引种初报[J]. 亚热带植物科学, 2018,47(3): 289–291. [13] 董发武,段玲慧,饶高雄,何红平. 橘叶化学成分的分离鉴定[J]. 中国实验方剂学杂志, 2018,24(21): 46–50. [14] Wu X, Song M, Gao Z, Sun Y, Wang M, Li F, Zheng J, Xiao H. Nobiletin and its colonic metabolites suppress colitis-associated colon carcinogenesis by down regulating iNOS, inducing antioxidative enzymes and arresting cell cycle progression[J]. Journal of Nutrition biochemistry, 2017,42: 17–25. [15] 张阳,姜华茂. 川陈皮素对人前列腺癌 DU145 细胞生长的抑制作用及其机制[J]. 吉林大学学报(医学版), 2020,46(6): 273–276. [16] Sousa D P, Pojo M, Pinto A T, Leite V, Serra A T. Nobiletin alone or in combination with cisplatin decreases the viability of anaplastic thyroid cancer cell lines[J]. Nutrition and Cancer, 2020,72(2): 352–363. [17] Goan Y G, Wu W T, Liu C I, Neoh C A, Wu Y J. Involvement of mitochondrial dysfunction, endoplasmic reticulum stress, and the PI3K/AKT/mTOR pathway in nobiletin-induced apoptosis of human bladder cancer cells[J]. Molecules, 2019,24(16): 2881. [18] Wei D, Zhang G, Zhu Z, Y Zheng, Yan F, Pan C, Wang Z, Li X, Wang F, Meng P. Nobiletin inhibits cell viability via the SRC/AKT/STAT3/YY1AP1 pathway in human renal carcinoma cells[J]. Frontiers in Pharmacology, 2019(10): 690. [19] heng G D, Hu P J, Chao Y X, Zhou Y, Cai Y. Nobiletin induces growth inhibition and apoptosis in human nasopharyngeal carcinoma C666-1 cells through regulating PARP-2/SIRT1/AMPK signaling pathway[J]. Food Science and Nutrition, 2019,7(3): 1104–1112. [20] 侯春宁,张雪松,李国林. 川陈皮素对口腔鳞状细胞癌细胞Cal-27增殖、迁移和侵袭的影响[J]. 口腔医学, 2018,38(6): 481–484. |
[1] | 赵陆滟,李荣平,吴劲松. 渐狭叶烟草组培苗生根条件优化及在基因转化中的应用[J]. 亚热带植物科学, 2021, 50(03): 175-181. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||