[1] Sierro N, Battey J N, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch M C, Ivanov N V. The tobacco genome sequence and its comparison with those of tomato and potato [J]. Nature Communications, 2014, 5: 3833.
[2] Grundmann L, K?nel A, Muth J, Beinecke F, Jekat M, Shen Y, Kudithipudi C, Xu D, Yang J, Warek U. Tissue-specific expression of barnase in tobacco delays axillary shoot development after topping [J]. Plant Biotechnology Journal, 2022, 20(3): 411–413.
[3] 朱小坤, 吴峰, 石长双, 王好运, 朱亚艳. 马尾松短枝腋芽休眠解除后形态与解剖学观察[J]. 东北林业大学学报, 2019, 47(5): 14–18.
[4] Liu Y, Ding Y F, Wang Q S, Li G H,Xu J X,Liu Z H. Effect of plant growth regulators on growth of rice tiller bud and changes of endogenous hormones [J]. Acta Agronomica Sinica, 2011, 37(4): 670–676.
[5] Ljung K, Nemhauser J L, Perata P. New mechanistic links between sugar and hormone signalling networks [J]. Current Opinion in Plant Biology, 2015, 25(5): 130–137.
[6] Müller D, Leyser O. Auxin, cytokinin and the control of shoot branching [J]. Annals of Botany, 2011, 107(7): 1203–1212.
[7] Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity [J]. Plant Cell, 2003, 15(11): 2532–2550.
[8] Xu J, Li Q, Yang L, Li X, Wang Z, Zhang Y. Changes in carbohydrate metabolism and endogenous hormone regulation during bulblet initiation and development in Lycoris radiata [J]. BMC plant biology, 2020, 20 (1): 180.
[9] Barbier F F, Dun E A, Kerr S C. An Update on the signals controlling shoot branching [J]. Trends in Plant Science, 2019, 24(3): 220–236.
[10] Hu J, Ji Y, Hu X, Sun S, Wang X. BES1 Functions as the Co–regulator of D53-like SMXLs to Inhibit BRC1 Expression in Strigolactone–regulated shoot branching in Arabidopsis [J]. Plant Communications, 2019, 1(3): 100014.
[11] Schneider A, Godin C, Boudon F, Sabine D M, Bertheloot J. Light regulation of axillary bud outgrowth along plant axes: An overview of the roles of sugars and hormones [J]. Frontiers in Plant Science, 2019, 10: 1296.
[12] Ito S, Umehara M, Hanada A, Kitahata N, Hayase H, Yamaguchi S, Asami T, Lee Y W. Effects of triazole derivatives on strigolactone levels and growth retar dation in rice [J]. PLoS One, 2011, 6(7): e21723.
[13] Yu H, Yang J, Cui H, Li Z, Jia F, Chen J. Effects of plant density on tillering in the weed grass Aegilops tauschii coss. and its phytohormonal regulation [J]. Plant Physiology and Biochemistry, 2020, 157: 70–78.
[14] Duan J, Yu H, Yuan K, Liao Z G, Li J Y. Strigolactone promotes cytokinin degradation through transcriptional activation of CYTOKININ OXIDASE/ DEHY DROGENASE 9 in rice [J]. Proceedings of the National Academy of Sciences of the Unite d States of America, 2019, 116(28): 14319–14324.
[15] 赵晨晨, 范雅丽, 秦岭, 邢宇, 房克凤, 张卿, 曹庆芹. 森林草莓 SL 合成关键基因 D27 的克隆与表达分析[J]. 园艺学报, 2016(5): 975–982.
[16] 吴转娣, 刘新龙, 刘家勇, 昝逢刚, 李旭娟, 刘洪博, 林秀琴, 陈学宽, 苏火生, 赵培方, 吴才文. 甘蔗 SL 生物合成关键基因 ScD27的克隆与表达分析[J]. 作物学报, 2017(1): 31–41.
[17] Li W, Nguyen K H, Chu H D. Comparative functional analyses of DWARF14 and KARRIKIN INSENSITIVE 2 in drought adaptation of Arabidopsis thaliana [J]. Plant Journal, 2020, 103(1): 111–127.
[18] Drummond R S M, Janssen B J, Luo Z. Environmental control of branching in petunia [J]. Plant Physiology, 2015, 168(2): 735–751.
[19] Li Q, Martín-Fontecha E S, Khosla A, White A R F, Chang S, Cubas P, Nelson D C. The strigolactone receptor D14 targets SMAX1 for degradation in response to GR24 treatment and osmotic stress [J]. Plant Communications, 2022, 3(2): 100303.
[20] Yang Y, Ahmad S, Yang Q, Yuan C Q, Zhang Q X. Decapitation experiments combined with the transcriptome analysis reveal the mechanism of high temperature on chrysanthemum axillary bud formation [J]. International Journal of Molecular Sciences, 2021, 22(18): 9704.
[21] Chen X J, Xia X J, Guo X, Zhou Y H, Shi K, Zhou J, Yu J Q. Apoplastic H2O2 plays a critical role in axillary bud outgrowth by altering auxin and cytokinin homeostasis in tomato plants [J]. New Phytologist, 2016, 211(4): 1266–1278.
[22] Ding N, Qin Q, Wu X. Antagonistic regulation of axillary bud outgrowth by the BRANCHED genes in tobacco [J]. Plant Molecular Biology, 2020, 103(1–2): 185–196.
[23] Vann M C. Soil applied maleic hydrazide does not suppress tobacco axillary bud growth [J]. Crop, Forage & Turfgrass Management, 2017, 3(1): 1–8.
[24] Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor [J]. Bioinformatics, 2018, 34(17): i884–i890.
[25] 王燃, 许亚龙, 李泽锋, 卢鹏, 孟利军, 曹培健. 基于芯片数据的烟草qRT-PCR内参基因鉴定与验证[J]. 烟草科技, 2015, 48(2): 1–6.
[26] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real–time quantitative PCR and the 2–△△CT Method [J]. Methods: A Companion to Methods in Enzymology, 2001, 25(4): 402–408.
[27] Ruyter-Spira C, Al-Babili S, San der V, Bouwmeester H. The biology of strigolactones [J]. Trends in Plant Science, 2013, 18(2): 72–83.
[28] Yao R, Wang F, Ming Z, Du X X, Chen L, Wang Y P, Zhang W H, Deng H T, Xie D X. ShHTL7 is a non-canonical receptor for strigolactones in root parasitic weeds [J]. Cell Research, 2017, 27(6): 838–841.
[29] Macdonald J E, Little C H A. Foliar application of GA3 during terminal long-shoot bud development stimulates shoot apical meristem activity in Pinus sylvestris seedlings [J]. Tree Physiology, 2006, 26(10): 1271–1276.
[30] Curtis J D, Popham R A. The developmental anatomy of long-branch terminal buds of Pinus banksiana [J]. American Journal of Botany, 1972, 59(2): 194–202.
[31] Wang H, Chen W, Eggert K, Charnikhova T, Bouwmeester H, Schweizer P, Hajirezaei M R, Seiler C, Sreenivasulu N, Wiren N V. Abscisic acid influences tillering by modulation of strigolactones in barley [J]. Journal of Experimental Botany, 2018, 69(16): 3883–3898.
[32] Gomez-Roldan V, Fermas S, Brewer P B. Strigolactone inhibition of shoot branching [J]. Nature, 2008, 455(7210): 189–194.
[33] Dierck R, Dhooghe E, Huylenbroeck J M, Riek J D, Straeten D V D. Response to strigolactone treatment in chrysanthemum axillary buds is influence d by auxin transport inhibition and sucrose availability [J]. Acta Physiologiae Plantarum, 2016, 38: 1–11.
[34] Yoneyama K, Brewer P B. Strigolactone, how are they synthesize d to regulate plant growth and development? [J]. Current Opinion in Plant Biology, 2021, 63: 102072.
[35] Kotov A A, Kotova L M, Romanov G A. Signaling network regulating plant branching: Recent advances and new challenges [J]. Plant Science, 2021, 307: 110880.
[36] Zhao B, Wu T T, Ma S S, Jiang D J, Bie X M, Sui N, Zhang X S, Wang F. TaD27-B gene controls the tiller number in hexaploid wheat [J]. Plant Biotechnology Journal, 2020, 18(2): 513–525.
[37] Yu C, Chen W, Wang Z, Lou H. Comparative proteomic analysis of tomato (Solanum lycopersicum L.) shoots reveals crosstalk between strigolactone and auxin [J]. Genomics, 2021, 113(5): 3163–3173.
[38] Kotov A A, Kotova L M. Interaction of phytohormones in regulating the axillary bud growth in pea [J]. Russian Journal of Plant Physiology, 2018, 65: 628–641.
[39] Mu?oz A, Pillot J P, Cubas P, Rameau C. Methods for phenotyping shoot branching and testing strigolactone bioactivity for shoot branching in arabidopsis and pea [J]. Methods in Molecular Biology (Clifton, N.J.), 2021, 2309: 115–127.
[40] Wang Y, Sun S Y, Zhu W J, Jia K P, Yang H G, Wang X L. Strigolactone/ MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching [J]. Developmental Cell, 2013, 27(6), 681–688.
[41] Xu H, Lian L, Wang F. Brassinosteroid signaling may regulate the germination of axillary buds in ratoon rice [J]. BMC Plant Biology, 2020, 20(1): 76.
[42] Hu J, Sun S, Wang X. Regulation of shoot branching by strigolactones and brassinosteroids: Conserved and specific functions of Arabidopsis BES1 an d rice BZR1 [J]. Molecular Plant, 2020, 13(6): 808–810.
[43] Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull C, Srinivasan M, Goddard P, Leyser O. MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derive d branch-inhibiting hormone [J]. Developmental Cell, 2005, 8(3): 443–449.
[44] Auldridge M E, Block A, Vogel J T, Smith C D. Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family [J]. The Plant Journal: for Cell and Molecular Biology, 2006, 45(6), 982–993.
[45] Arite T, Iwata H, Ohshima K, Maekawa M,?Nakajima M,?Kojima M,?Sakakibara H,?Kyozuka J. DWARF 10, an RMS1/ MAX4/ DAD1 ortholog, controls lateral bud outgrowth in rice [J]. Plant Journal, 2007, 51(6): 1019–1029.
[46] Beveridge C A, Symons G M, and Turnbull C G. Auxin inhibition of decapitation-induced branching is dependent on graft-transmissible signals regulated by genes Rms1 and Rms2 [J]. Plant Physiology, 2009, 123(2), 689–698.
[47] Ferguson BJ, Beveridge C A. Roles for auxin, cytokinin, and strigolactone in regulating shoot branching [J]. Plant Physiology, 2009, 149(4), 1929–1944.
[48] Lin H, Wang R, Qian Q, Yan M,?Meng X,?Fu Z, Yan C, Jiang B, Su Z, Li J,?Wang Y. DWARF27, an iron-containing protein require d for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth [J]. Plant Cell, 2009, 21(5): 1512–1525.
[49] Song X, Lu Z, Yu H, Shao G N, Xiong J S, Meng X B, Jing Y H, Liu G F, Xiong G S, Duan J B, Yao X F, Liu C M, Li H Q, Wang Y H, Li J Y. IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice [J]. Cell Research, 2017, 27(9): 1128–1141.
[50] Stirnberg P, Furner I J, Ottoline Leyser H. MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching [J]. Plant Journal, 2007, 50: 80–94.
[51] Ishikawa S, Maekawa M, Arite T, Takamure I, Kyozuka J. Suppression of tiller bud activity in tillering dwarf mutants of rice [J]. Plant Cell Physiology, 2005, 46(1): 79–86.
[52] Napoli C. Highly branched phenotype of the petunia dad1-1 mutant is reverse d by grafting [J]. Plant Physiology, 1996, 111(1): 27–37.
[53] Nakamura H, Xue Y L, Miyakawa T, Hou F,?Qin H M,?Fukui K,?Shi X,?Ito E,?Ito S,?Park S H,?Miyauchi Y,?Asano A,?Totsuka N,?Ueda T,?Tanokura M,?Asami T. Molecular mechanism of strigolactone perception by DWARF14 [J]. Nature Communications, 2013, 4: 2613.
[54] Soundappan I, Stanga J P, Abbas A, Liang Y Y, Nelson D C. SMAX1-LIKE/ D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis [J]. Plant Cell, 2015, 27(11): 3143–3159.
[55] Bennett T, Leyser O. Strigolactone signalling: standing on the shoulders of DWARFs [J]. Current Opinion in Plant Biology, 2014, 22: 7–13.
[56] Smith S M, Li J. Signalling and responses to strigolactones and karrikins [J]. Current Opinion in Plant Biology, 2014, 21: 23–29.
|