|
[1] Appel H, Cocroft R. Plant ecoacoustics: a
sensory ecology approach [J]. Trends in Ecology & Evolution, 2023, 38(7):
623–630.
[2] Wu L, Yang N, Guo M, Zhang D D, Ghiladi R A,
Bayram H, Wang J. The role of sound stimulation in production of plant
secondary metabolites [J]. Natural Products and Bioprospecting, 2023,13(1): 40.
[3] Khait I, Obolski U, Yovel Y, Hadany L. Sound
perception in plants [C]// Seminars in cell & developmental biology. Cambridge, Massachusetts:
Academic Press, 2019: 134–138.
[4] Bhandawat
A, Jayaswall K. Biological relevance of sound in plants [J]. Environmental and
Experimental Botany, 2022, 200: 104919.
[5] Chowdhury M E K, Lim H S, Bae H. Update on the
effects of sound wave on plants [J]. Research in Plant Disease, 2014, 20(1):
1–7.
[6] Ghosh R, Mishra R C, Choi B, Kwon Y S, Bae D
W, Park S C, Jeong M J, Bae H. Exposure to sound vibrations lead to
transcriptomic, proteomic and hormonal changes in Arabidopsis [J]. Scientific
Reports, 2016, 6(1): 33370.
[7] Hassanien R H E, Hou T Z, Li Y F, Li B M.
Advances in effects of sound waves on plants [J]. Journal of Integrative
Agriculture, 2014, 13(2): 335–348.
[8] Hazama S, Omori K, Sakamoto R, Masugi M. Study
on effect of artificial periodic sound on the growth of radish [J].
Environmental Control in Biology, 2024, 62(4): 101–104.
[9] Kim J Y, Kim S K, Jung J, Jeong M J, Ryu C M.
Exploring the sound-modulated delay in tomato ripening through expression
analysis of coding and non-coding RNAs [J]. Annals of Botany, 2018,122(7):
1231–1244.
[10] Hendrawan Y, Anniza K N, Prasetyo J, Damayanti R, Djoyowasito G.
Effect of plant sound wave technology to increase productivity of mustard
greens (Brassica juncea L.) [C]// IOP
Conference Series: Earth and Environmental Science. IOP Publishing,
2020: 12.
[11] Yu S M, Jiang S R, Zhu L F, Zhang J H, Jin Q Y. Effects of acoustic
frequency technology on rice growth, yield and quality [J]. Transactions of the
Chinese Society of Agricultural Engineering, 2013, 29(2): 141–147.
[12] Solé M, Lenoir M, Durfort M,
Fortuño
J M, Van der Schaar M, De Vreese S, André M. Seagrass
Posidonia is impaired by human- generated noise[J].
Communications Biology, 2021, 4(1): 743.
[13] Ollerton J, Winfree R, Tarrant S. How many flowering plants are
pollinated by animals? [J]. Oikos, 2011,120(3): 321–326.
[14] Nevard L, Russell A L, Foord K,
Vallejo–Marín, M. Transmission of bee-like vibrations in buzz-pollinated plants
with different stamen architectures [J]. Scientific Reports, 2021, 11(1):
13541.
[15] Veits M, Khait I, Obolski U, Zinger E, Boonman A, Goldshtein A, Saban K, Seltzer R, Ben-Dor U, Estlein P, Kabat
A, Peretz D, Ratzersdorfer I, Krylov S, Chamovitz D, Sapir Y, Yovel Y,
Hadany L. Flowers respond to pollinator sound within minutes by increasing
nectar sugar concentration [J]. Ecology Letters, 2019, 22(9): 1483–1492.
[16] Gagliano M, Grimonprez M, Depczynski M, Renten M. Tuned in: plant
roots use sound to locate water [J]. Oecologia, 2017, 184(1): 151–160.
[17] Lugli M, Fine M L. Acoustic communication in two freshwater gobies:
ambient noise and short-range propagation in shallow streams [J]. The Journal
of the Acoustical Society of America, 2003, 114(1): 512–521.
[18] Gagliano M, Mancuso S, Robert D. Towards understanding plant
bioacoustics [J]. Trends in Plant Science, 2012, 17(6): 323–325.
[19] Rodrigo-Moreno A, Bazihizina N, Azzarello E, Masi E, Tran D,
Bouteau F, Baluska F, Mancuso S. Root phonotropism: early signalling events
following sound perception in Arabidopsis roots [J]. Plant Science, 2017, 264: 9–15.
[20] Kollasch A M, Abdul-Kafi A R, Body M J A, Pinto C F, Appel H M,
Cocroft R B. Leaf vibrations produced by chewing provide a consistent acoustic
target for plant recognition of herbivores [J]. Oecologia, 2020, 194: 1–13.
[21] Body M J A, Neer W C, Vore C,
Lin C H, Vu D C, Schultz J C, Cocroft R B, Appel H M. Caterpillar chewing
vibrations cause changes in plant hormones and volatile emissions in Arabidopsis thaliana [J]. Frontiers in
Plant Science, 2019, 10: 810.
[22] Appel H M, Cocroft R B. Plants respond to leaf vibrations caused by
insect herbivore chewing [J]. Oecologia, 2014, 175(4): 1257–1266.
[23] Hou T Z, Li B M, Teng G H, Zhou Q, Xiao Y P, Qi L R. Application of
acoustic frequency technology to protected vegetable production [J].
Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(2):
156–160.
[24] Qi L, Teng G, Hou T, Zhu B, Liu X. Influence of sound wave
stimulation on the growth of strawberry in sunlight greenhouse [C]// International
Conference on Computer and Computing Technologies in Agriculture III: Third
IFIP TC 12 International Conference, CCTA 2009, Beijing, China: Springer Berlin
Heidelberg, 2010: 449–454.
[25] Pinto C F, Torrico–Bazoberry D, Penna M, Cossio-Rodriguez R,
Cocroft R, Appel H, Niemeyer H M. Chemical responses of Nicotiana tabacum (Solanaceae) induced by vibrational signals of a
generalist herbivore [J]. Journal of Chemical Ecology, 2019, 45: 708–714.
[26] Son J S, Jang S, Mathevon N, Ryu C M. Is plant acoustic
communication fact or fiction? [J]. New Phytologist, 2024, 242(5): 1876–1880.
[27] Simon R, Holderied M W, Koch C U, Von H O. Floral acoustics: Conspicuous
echoes of a dish-shaped leaf attract bat pollinators [J]. Science, 2011, 80(333):
631–633.
[28] Schöner M G, Schöner C R, Simon R, Grafe T U, Puechmaille S J, Ji L
L, Kerth G. Bats are acoustically attracted to mutualistic carnivorous plants [J]. Current Biology, 2015, 25(14): 1911–1916.
[29] Grafe T U, Schöner C R, Kerth G, Junaidi A, Schöner M G. A novel
resource-service mutualism between bats and pitcher plants [J]. Biology
Letters, 2011, 7(3): 436–439.
[30] Kim J Y, Kang Y E, Lee S I, Kim J A, Muthusamy M, Jeong M J. Sound
waves affect the total flavonoid contents in Medicago sativa, Brassica
oleracea and Raphanus sativus sprouts [J]. Journal of the Science of Food and Agriculture, 2020, 100(1):
431–440.
[31] Kim J Y, Lee S I, Kim J A, Muthusamy M, Jeong M J.Specific audible
sound waves improve flavonoid contents and antioxidative properties of sprouts [J].
Scientia Horticulturae, 2021, 276: 109746.
[32] Azgomi S, Iranbakhsh A, Majd A, Ebadi M, Oraghi A Z. The importance
of sound rhythm: music and noise elicit different biological responses in Satureja hortensis L. [J]. Theoretical
and Experimental Plant Physiology, 2023, 35(3): 215–232.
[33] Jung J, Kim S K, Jung S H, Jeong M J, Ryu C M. Sound vibration-triggered
epigenetic modulation induces plant root immunity against Ralstonia solanacearum [J]. Frontiers in Microbiology, 2020, 11:
1978.
[34] Bhandawat A, Jayaswall K, Sharma H, Roy J. Sound as a stimulus in
associative learning for heat stress in Arabidopsis[J]. Communicative &
Integrative Biology, 2020, 13(1): 1–5.
[35] López–Ribera I, Vicient C M. Drought tolerance induced by sound in Arabidopsis plants [J]. Plant Signaling
& Behavior, 2017, 12(10): e1368938.
[36] De Roo L, Vergeynst L L, De Baerdemaeker N J F, Steppe K. Acoustic
emissions to measure drought-induced cavitation in plants [J]. Applied
Sciences, 2016, 6(3): 71.
[37] Khait I, Lewin-Epstein O, Sharon R, Saban K, Goldstein R, Anikster
Y, Zeron Y, Agassy C, Nizan S, Sharabi G, Perelman R, Boonman A, Sada N, Yovel
Y, Hadany L. Sounds emitted by plants under stress are airborne and informative
[J]. Cell, 2023, 186(7): 1328–1336.
[38] Khait I, Lewin-Epstein O, Sharon R, Saban K, PerelmanR, Boonman A,
Yovel Y, Hadany L. Plants emit informative airborne sounds under
stress [J]. bioRxiv, 2018: DOI: 10.1101/507590.
[39] Dutta S, Chen Z, Kaiser E, Matamoros P M, Steeneken P, Verbiest G.
Ultrasound pulse emission spectroscopy method to characterize xylem conduits in
plant stems [J]. Research, 2023(1): 139–152.
[40] De Roo L, Vergeynst L L, De Baerdemaeker N J F, Steppe K. Acoustic
emissions to measure drought-induced cavitation in plants [J]. Applied
Sciences, 2016, 6(3): 71.
[41] Nardini A, Cochard H, Mayr S. Talk is cheap: rediscovering sounds
made by plants [J]. Trends in Plant Science, 2024, 29(6): 662–667.
[42] Rosner S. Characteristics of acoustic emissions from dehydrating
wood related to shrinkage processes [J]. Journal of Acoustic Emission, 2007,
25: 149–156.
[43] Yin J, Liu H, Jiao J J, Peng X J, Pickard B G, Genin G M, Lu T J,
Liu S. Ensembles of the leaf trichomes of Arabidopsis
thaliana selectively vibrate in the frequency range of its primary insect
herbivore [J]. Extreme Mechanics Letters, 2021, 48: 101377.
[44] Liu S, Jiao J, Lu T J, Xu F, Pickard B G, Genin G M. Arabidopsis
leaf trichomes as acoustic antennae [J]. Biophysical Journal, 2017, 113(9):
2068–2076.
[45] Peng X, Liu Y, He W, Hoppe E D,
Zhou L, Xin F X, Haswell E S, Pickard B G, Genin G M, Lu T J. Acoustic
radiation force on a long cylinder, and potential sound transduction by tomato
trichomes [J]. Biophysical Journal, 2022, 121(20): 3917–3926.
[46] Tooker J, Peiffer M, Luthe D S, Felton G W. Trichomes as sensors:
detecting activity on the leaf surface [J]. Plant Signaling & Behavior,
2010, 5(1): 73–75.
[47] Rodrigo-Moreno A, Bazihizina N, Azzarello E, Masi E, Tran D,
Bouteau F, Baluska F, Mancuso S. Root phonotropism: early signalling events
following sound perception in Arabidopsis roots [J]. Plant Science, 2017, 264: 9–15.
[48] Ye Z, Yang R, Xue Y, Xu Z, He Y, Chen X, Ren Q, Sun J, Ma X, Hu J,
Yang L. Evidence for the role of sound on the growth and signal response in
duckweed [J]. Plant Signaling & Behavior, 2023, 18(1): 2163346.
[49] Del Stabile F, Marsili V, Forti L, Arru L. Is there a role for
sound in plants? [J]. Plants, 2022, 11(18): 2391.
[50] Fullard J H, Dawson J W, Jacobs D S. Auditory encoding during the
last moment of a moth's life [J]. Journal of Experimental Biology, 2003, 206(2):
281–294.
|