亚热带植物科学 ›› 2018, Vol. 47 ›› Issue (03): 251-255.DOI: 10.3969/j.issn.1009-7791.2018.03.011

• 植物生态与资源分类 • 上一篇    下一篇

基于PSO-LSSVR模型的土壤肥力评价

赵金平,李海鸥   

  1. (1.湖南农业大学生物科学技术学院,湖南 长沙 410128;2.湖南农业大学科技创新平台,湖南 长沙 410128)
  • 收稿日期:2018-07-29 修回日期:2018-08-15 出版日期:2018-09-30 发布日期:2018-09-30
  • 通讯作者: 李海鸥
  • 作者简介:赵金平,硕士研究生,从事植物分子育种研究。
  • 基金资助:
    湖南省自然科学基金项目(2016JJ2065)

PSO-LSSVR-Based Soil Fertility Evaluation

ZHAO Jin-ping, LI Hai-ou   

  1. (1.College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan China; 2.Science and Biotechnological Innovation Platform, Hunan Agricultural University, Changsha 410128, Hunan China)
  • Received:2018-07-29 Revised:2018-08-15 Online:2018-09-30 Published:2018-09-30
  • Contact: LI Hai-ou

摘要: 通过引入粒子群算法(PSO)和最小二乘支持向量机(LSSVR),提出基于PSO-LSSVR的土壤肥力评价模型。选取有机质、全氮速效磷、速效钾、阳离子交换量、酸碱度、容重、黏粒、水稳性团聚体和分散率等10种评价指标,以吉林省黑地为例,建立土壤肥力评价模型。同时与物元可拓法、普通SVM模型的评价结果进行比较;3种方法的多数样本评价结果基本一致,对于样本2、样本13,PSO-LSSVR模型分别定为Ⅳ级、Ⅲ级,符合实际情况;表明PSO-LSSVR是一种适用且能准确反映土壤特性的土壤肥力评价模型。

关键词: 最小二乘支持向量机, 评价, 粒子群算法, 土壤肥力

Abstract: Associated with Particle Swarm Optimization (PSO) and Least Squares Support Vector Machine (LSSVR), this study proposes a soil fertility evaluation model based on PSO-LSSVR. Ten soil indicators were selected as elevation indexes, which included organic matters, total nitrogen, available phosphorus, available potassium, cation exchange, capacity, acidity-alkalinity, volume weight, clay dispersion, water stable aggregated and dispersion ratio. The black soil in Jilin province was used example to construct soil fertility evaluation model. The result was compared with two other methods (extension-element method and ordinary SVM method), the soil fertility levels of most samples were consistent, sample 2 and sample 13 were classified as grade Ⅳ and grade Ⅲ by PSO-LSSVR model respectively, which were in line with the actual situation, which showed that PSO-LSSVR model was a suitable soil fertility evaluation model and the result accurately reflected soil properties.

Key words: least square support vector machine regression, evaluation, particle swarm optimization, soil fertility

中图分类号: