Subtropical Plant Science ›› 2020, Vol. 49 ›› Issue (02): 148-156.DOI: 10.3969/j.issn.1009-7791.2020.02.013
• Reviews • Previous Articles Next Articles
CHEN Wei-li, GE Chao-mei, YE Tao, ZHANG Ran, SUN Qin-yu, ZHANG Jia-xia
Received:
2019-11-21
Revised:
2019-12-17
Online:
2020-04-30
Published:
2020-04-30
Contact:
ZHANG Jia-xia*
陈伟立,葛超美,叶 涛,张 冉,孙钦玉,张家侠
通讯作者:
张家侠
基金资助:
CLC Number:
CHEN Wei-li, GE Chao-mei, YE Tao, ZHANG Ran, SUN Qin-yu, ZHANG Jia-xia. Review of Tea Plant (Camellia sinensis) Root Growth and Its Influencing Factors[J]. Subtropical Plant Science, 2020, 49(02): 148-156.
陈伟立,葛超美,叶 涛,张 冉,孙钦玉,张家侠. 茶树根系生长及其影响因子研究进展[J]. 亚热带植物科学, 2020, 49(02): 148-156.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.yrdzwkx.com/EN/10.3969/j.issn.1009-7791.2020.02.013
[1] 吕永康,徐月瑶. 茶树根系形态对植株生长发育的影响研究[J]. 天津农林科技, 2016(2): 18–21. [2] 陈伟立,李娟,朱红惠,陈杰忠,姚青. 根际微生物调控植物根系构型的研究进展[J]. 生态学报, 2016,36(17): 5285–5297. [3] Del Bianco M, Kepinski S. Building a future with root architecture[J]. Journal of Experimental Botany, 2018,69(22): 5319–5323. [4] 骆耀平. 茶树栽培学(第五版)[M]. 北京: 中国农业出版社, 2015: 43. [5] Yamashita M, Takyu T, Saba T. Gravitropic reaction in the growth of tea roots[J]. Japanese Journal of Crop Science, 1997,66(3): 472–478. [6] 袁军,谭晓风,袁德义,谢鹏,蒋又来. 油茶根系分布规律调查研究[J]. 浙江林业科技, 2009,29(4): 30–32. [7] 康乐,杨水平,姚小华,王开良,洪友君,王毅. 不同品种油茶嫁接苗根系生长动态研究[J]. 林业科学研究, 2010,23(3): 467–471. [8] 陆建良,梁月荣. 茶树根系特性与茶园管理[J]. 茶叶科学简报, 1994(1): 1–5. [9] 杨广容,邵宛芳,陶梅,杨琴,李家华. 不同茶树品种种子萌发特性的研究[J]. 云南农业大学学报, 2013,28(6): 769–774. [10] 刘小妹,孙丽莉,傅向东,廖红. 茶树嫩枝扦插的高效方法[J]. 植物学报, 2019,54(4): 1–8. [11] Yamashita M. Root-system formation in clonal tea plants[J]. Japan Agricultural Research Quarterly, 1994,28(1): 26–35. [12] 方开星,姜晓辉,吴华玲. 茶树茶氨酸的代谢及其育种研究进展[J]. 园艺学报, 2016,43(9): 1791–1802. [13] Nyirenda H E. Root-growth characteristics and rootstock vigor in tea (Camellia sinensis)[J]. Journal of Horticultural Science, 1990,65(4): 461–464. [14] Kamau D M, Spiertz J H J, Oenema O. Carbon and nutrient stocks of tea plantations differing in age, genotype and plant population density[J]. Plant and Soil, 2008,307(1–2): 29–39. [15] 苏有健,王烨军,张永利,罗毅,廖万有. 茶园土壤酸化阻控与改良技术[J]. 中国茶叶, 2018,40(3): 9–11, 15. [16] 刘美雅,伊晓云,石元值,马立锋,阮建云. 茶园土壤性状及茶树营养元素吸收、转运机制研究进展[J]. 茶叶科学, 2015,35(2): 110–120. [17] Lin Z H, Chen L S, Chen R B, Zhang F Z, Jiang H X, Tang N, Smith B R. Root release and metabolism of organic acids in tea plants in response to phosphorus supply[J]. Journal of Plant Physiology, 2011,168(7): 644–652. [18] Hu X F, Chen F S, Wine M L, Fang X M. Increasing acidity of rain in subtropical tea plantation alters aluminum and nutrient distributions at the root-soil interface and in plant tissues[J]. Plant and Soil, 2017,417(1-2): 261–274. [19] Hu X E, Wu A Q, Wang F C, Chen F S. The effects of simulated acid rain on internal nutrient cycling and the ratios of Mg, Al, Ca, N, and P in tea plants of a subtropical plantation[J]. Environmental Monitoring and Assessment, 2019,191(2): 99. [20] Wan Q, Xu R K, Li X H. Proton release from tea plant (Camellia sinensis L.) roots induced by Al(III) under hydroponic conditions[J]. Soil Research, 2012,50(6): 482–488. [21] Zhang X C, Wu H H, Chen L M, Li Y Y, Wan X C. Efficient iron plaque formation on tea (Camellia sinensis) roots contributes to acidic stress tolerance[J]. Journal of Integrative Plant Biology, 2019,61(2): 155–167. [22] Ruan J, Haerdter R, Gerendas J. Impact of nitrogen supply on carbon/nitrogen allocation: a case study on amino acids and catechins in green tea [Camellia sinensis (L.) O. Kuntze] plants[J]. Plant Biology, 2010,12(5): 724–734. [23] Yang Y Y, Li X H, Ratcliffe R G, Ruan J Y. Characterization of ammonium and nitrate uptake and assimilation in roots of tea plants[J]. Russian Journal of Plant Physiology, 2013,60(1): 91–99. [24] Ma L F, Shi Y Z, Ruan J Y. Nitrogen absorption by field-grown tea plants (Camellia sinensis) in winter dormancy and utilization in spring shoots[J]. Plant and Soil, 2019,442(1): 127–140. [25] Kochian L V, Hoekenga O A, Pineros M A. How do crop plants tolerate acid soils? mechanisms of aluminum tolerance and phosphorous efficiency[J]. Annual Review of Plant Biology, 2004,55(1): 459–493. [26] Salehi S Y, Hajiboland R. A high internal phosphorus use efficiency in tea (Camellia sinensis L.) plants[J]. Asian Journal of Plant Sciences, 2008,7(1): 30–36. [27] Singh A K, Pathak S K. Potassium in tea (Camellia sinensis (L.) O. Kuntze) cultivation from soil to cup quality-A review[J]. Agricultural Reviews, 2018,39(1): 40–47. [28] Ruan J Y, Ma L F, Shi Y Z. Potassium management in tea plantations: Its uptake by field plants, status in soils, and efficacy on yields and quality of teas in China[J]. Journal of Plant Nutrition and Soil Science, 2013,176(3): 450–459. [29] 张小琴,赵华富,姜艳艳,杨婷,周国兰,周顺珍,王家伦. 不同植茶年限茶园土壤有效营养元素分析[J]. 热带作物学报, 2017,38(12): 2226–2231. [30] 阮建云,吴洵. 钾和镁对乌龙茶产量和品质的影响[J]. 茶叶科学, 1997,17(1): 9–13. [31] 李金龙,曾婕,汪云刚,刘本英,尚卫琼,陈春林. 镁对云南大叶种绿茶品质的影响[J]. 陕西农业科学, 2019,65(1): 39–40, 52. [32] Ruan J Y, Wu X, Hardter R. Effects of potassium and magnesium nutrition on the quality components of different types of tea[J]. Journal of the Science of Food and Agriculture, 1999,79(1): 47–52. [33] Fung K F, Carr H P, Zhang J H, Wong M H. Growth and nutrient uptake of tea under different aluminium concentrations[J]. Journal of the Science of Food and Agriculture, 2008,88(9): 1582–1591. [34] Hajiboland R, Bahrami Rad S, Barceló J, Poschenrieder C. Mechanisms of aluminum-induced growth stimulation in tea (Camellia sinensis)[J]. Journal of Plant Nutrition and Soil Science, 2013,176(4): 616–625. [35] Fan K, Wang M, Gao Y Y, Ning Q Y, Shi Y Z. Transcriptomic and ionomic analysis provides new insight into the beneficial effect of Al on tea roots’ growth and nutrient uptake[J]. Plant Cell Reports, 2019,38(6): 715–729. [36] Hajiboland R, Barceló J, Poschenrieder C, Tolrà R. Amelioration of iron toxicity: A mechanism for aluminum- induced growth stimulation in tea plants[J]. Journal of Inorganic Biochemistry, 2013,128: 183–187. [37] 苏有健,廖万有,王烨军,丁勇,胡善国. 安徽典型山地茶园养分状况与土壤特性的研究[J]. 中国农学通报, 2013,29(28): 205–210. [38] 彭正萍. 植物氮素吸收、运转和分配调控机制研究[J]. 河北农业大学学报, 2019,42(2): 1–5. [39] Zhang H M, Forde B G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture[J]. Science, 1998,279(5349): 407–409. [40] Anandacoomaraswamy A, De Costa W, Tennakoon P, Van Der Werf A. The physiological basis of increased biomass partitioning to roots upon nitrogen deprivation in young clonal tea [Camellia sinensis (L.) O. Kuntz][J]. Plant and Soil, 2002,238(1): 1–9. [41] 张玉,秦华东,伍龙梅,张婧,李忠,黄敏,江立庚. 玉米根系生长特性及氮肥运筹对根系生长的影响[J]. 中国农业大学学报, 2014,19(6): 62–70. [42] Chamuah G S. The effect of nitrogen on root-growth and nutrient-uptake of young tea plants (Camellia sinensis L.) grown in sand culture[J]. Fertilizer Research, 1988,16(1): 59–65. [43] Yamashita M, Takyu T, Saba T. Influences of root pruning on reproduction and activity of roots in mature tea plants[J]. Japanese Journal of Crop Science, 1995,64(4): 740–746. [44] Ruan L, Wei K, Wang L Y, Cheng H, Wu L Y, Li H L. Characteristics of free amino acids (the quality chemical components of tea) under spatial heterogeneity of different nitrogen forms in tea (Camellia sinensis) plants[J]. Molecules, 2019,24: 415. [45] Ham B K, Chen J Y, Yan Y, Lucas W J. Insights into plant phosphate sensing and signaling[J]. Current Opinion in Biotechnology, 2018,49: 1–9. [46] 袁军,谭晓风,袁德义,李卫星,罗健,王渊. 缺素对普通油茶幼苗根系形态及活力的影响[J]. 湖北农业科学, 2010,49(2): 314–316. [47] 艾佐佐,袁军,黄丽媛,谭晓风. 磷对铝胁迫下油茶幼苗根冠比及根系形态的影响[J]. 江苏农业科学, 2017,45(12): 106–108. [48] 谭晓风,袁军,李泽,叶思诚,姜志娜. 铝磷对普通油茶根系形态和活力及物质分配的影响[J]. 中南林业科技大学学报, 2011,31(12): 108–110. [49] Tsuji M, Kuboi T, Konishi S. Stimulatory effects of aluminum on the growth of cultured roots of tea[J]. Soil Science and Plant Nutrition, 1994,40(3): 471–476. [50] 伍炳华,许允文,韩文炎. 铝对茶树根系生长及氮素营养的影响[J]. 中国茶叶, 1995(2): 28–29. [51] Xu Q S, Wang Y, Ding Z T, Fan K, Ma D X, Zhang Y L, Yin Q. Aluminum induced physiological and proteomic responses in tea (Camellia sinensis) roots and leaves[J]. Plant Physiology and Biochemistry, 2017,115: 141–151. [52] Safari M, Ghanati F, Safarnejad M R, Chashmi N A. The contribution of cell wall composition in the expansion of Camellia sinensis seedlings roots in response to aluminum[J]. Planta, 2018,247(2): 381–392. [53] 黄丹娟,谭荣荣,陈勋,王红娟,龚自明,王友平,毛迎新. 铝诱导的茶树根系转录组变化分析[J]. 茶叶科学, 2019,39(5): 506–520. [54] 宋丽红,曹帮华. 光叶楮扦插生根的吲哚乙酸氧化酶、多酚氧化酶、过氧化物酶活性变化研究[J]. 武汉植物学研究, 2005,23(4): 347–350. [55] 李涛,曹翠玲,田霄鸿,胡景江. 低磷胁迫下熊猫豆侧根增多的生理机制研究[J]. 植物营养与肥料学报, 2013,19(4): 926–933. [56] Das A, Das S, Mondal T K. Identification of differentially expressed gene profiles in young roots of tea [Camellia sinensis (L.) O. Kuntze] subjected to drought stress using suppression subtractive hybridization[J]. Plant Molecular Biology Reporter, 2012,30(5): 1088–1101. [57] 牛素贞,宋勤飞,樊卫国,陈正武. 干旱胁迫对喀斯特地区野生茶树幼苗生理特性及根系生长的影响[J]. 生态学报, 2017,37(21): 7333–7341. [58] Upadhyaya H, Panda S K. Abiotic stress responses in tea [Camellia sinensis (L.) O. Kuntze]: an overview[J]. Reviews in Agricultural Science, 2013,1: 1–10. [59] 阮建云. 中国茶树栽培40年[J]. 中国茶叶, 2019,41(7): 1–7. [60] 李秉钧,颜耀,吴文景,吴鹏飞,邹显花,马祥庆. 环境因子对植物根系及其构型的影响研究进展[J]. 亚热带水土保持, 2019,31(3): 41–45. [61] 王家顺,李志友. 干旱胁迫对茶树根系形态特征的影响[J]. 河南农业科学, 2011,40(9): 55–57. [62] Yamashita M, Takyu T, Saba T. Influences of root pruning on shoot growth and yield of the first crop in mature tea plants[J]. Japanese Journal of Crop Science, 1997,66(2): 229–234. [63] Pramanik P, Phukan M, Ghosh S, Goswami A J. Pruned tea bushes secrete more root exudates to influence microbiological properties in soil[J]. Archives of Agronomy and Soil Science, 2018,64(8): 1172–1180. [64] 王传明,刘成贵,吕长钦. 切根对油茶幼苗根系发育的影响[J]. 现代农业科技, 2014(18): 165–166. [65] Balasuriya J. The partitioning of net total dry matter to roots of clonal tea (Camellia sinensis) at different altitudes in the wet zone of Sri Lanka[J]. Tropical Agriculture, 2000,77(3): 163–168. [66] 陈丽文. 抗冻剂对低温下油茶的生理作用[J]. 江苏农业科学, 2018,46(3): 103–106. [67] Hamid F S, Ahmad T, Khan B M, Waheed A, Ahmed N. Effect of soil pH in rooting and growth of tea cuttings (Camellia sinensis L.) at nursery level[J]. Pakistan Journal of Botany, 2006,38(2): 293–300. [68] Zhang G H, Liang Y R, Jin J, Lu J L, Borthakur D, Dong J J, Zheng X Q. Induction of hairy roots by Agrobacterium rhizogenes in relation to L-theanine production in Camellia sinensis[J]. Journal of Horticultural Science & Biotechnology, 2007,82(4): 636–640. [69] Erturk Y, Ercisli S, Sekban R, Haznedar A, Donmez M F. The effect of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of tea (Camellia sinensis var. sinensis) cuttings[J]. Romanian Biotechnological Letters, 2008,13(3): 3747–3756. [70] Alagarsamy K, Shamala L F, Wei S. Protocol: high-efficiency in-planta Agrobacterium-mediated transgenic hairy root induction of Camellia sinensis var. sinensis[J]. Plant Methods, 2018,14: 17. [71] Zehra M, Banerjee S, Mathur A K, Kukreja A K. Induction of hairy roots in tea (Camellia sinensis L.) using Agrobacterium rhizogenes[J]. Current Science, 1996,70(1): 84–86. [72] Wang X, Pan Q, Chen F, Yan X, Liao H. Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P[J]. Mycorrhiza, 2011,21(3): 173–181. [73] Mishra A K, Morang P, Deka M, Kumar S N, Kumar B S D. Plant growth-promoting rhizobacterial strain-mediated induced systemic resistance in tea [Camellia sinensis (L.) O. Kuntze] through defense-related enzymes against brown root rot and charcoal stump rot[J]. Applied Biochemistry and Biotechnology, 2014,174(2): 506–521. [74] Smith S E, Read D J. Mycorrhizal symbiosis[M]. London: Academic Press, 2010. [75] 高秀兵,陈娟,郭灿,姚雍静,赵志清. 茶树丛枝菌根真菌的研究进展[J]. 贵州农业科学, 2011,39(9): 122–126. [76] Gavito M E, Jakobsen I, Mikkelsen T N, Mora F. Direct evidence for modulation of photosynthesis by an arbuscular mycorrhiza-induced carbon sink strength[J]. New Phytologist, 2019,223(2): 896–907. [77] Shao Y D, Zhang D J, Hu X C, Wu Q S, Jiang C J, Xia T J, Gao X B, Kuca K. Mycorrhiza-induced changes in root growth and nutrient absorption of tea plants[J]. Plant Soil and Environment, 2018,64(6): 283–289. [78] Singh S, Pandey A, Kumar B, Palni L M S. Enhancement in growth and quality parameters of tea [Camellia sinensis (L.) O. Kuntze] through inoculation with arbuscular mycorrhizal fungi in an acid soil[J]. Biology and Fertility of Soils, 2010,46(5): 427–433. [79] Sharma D, Kayang H. Effects of arbuscular mycorrhizal fungi (AMF) on Camellia sinensis (L.) O. Kuntze under greenhouse conditions[J]. Journal of Experimental Biology and Agricultural Sciences, 2017,5(2): 235–241. [80] Liu Y L, Matsubara Y, Li Y, Inagaki M, Sugiyama M. Promotion of rooting and the increase in leaf GABA content of mycorrhizal tea plants[J]. Acta Horticulturae, 2007(761): 267–270. [81] 夏庭君,吴强盛,邵雅东,江昌俊. 丛枝菌根真菌对福鼎大白茶生长、侧根数和根系内源激素的影响[J]. 广西植物, 2018,38(12): 1635–1640. [82] 许朋阳,陈伟立,朱红惠,李娟,陈杰忠,姚青. 丛枝菌根真菌、磷和生长素对枳侧根形成的调控效应[J]. 亚热带植物科学, 2016,45(3): 216–220. [83] 陈杰丹,马春雷,陈亮. 我国茶树种质资源研究40年[J]. 中国茶叶, 2019,41(6): 1–5. [84] Fusconi A. Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation?[J]. Annals of Botany, 2014,113(1): 19–33. [85] Fonouni-Farde C, Miassod A, Laffont C, Morin H, Bendahmane A, Diet A, Frugier F. Gibberellins negatively regulate the development of Medicago truncatula root system[J]. Scientific Reports, 2019,9: 2335. [86] Motte H, Vanneste S, Beeckman T. Molecular and environmental regulation of root development[J]. Annual Review of Plant Biology, 2019,70(1): 465–488. [87] Banda J, Bellande K, von Wangenheim D, Goh T, Guyomarc H S, Laplaze L, Bennett M J. Lateral root formation in Arabidopsis: A well-ordered LRexit[J]. Trends in Plant Science, 2019,24(9): 826–839. |
[1] | LI Yan, ZHANG Fan. Extracting Tea Plantations in Xiamen Based on Sentinel-2 Data [J]. Subtropical Plant Science, 2023, 52(4): 327-335. |
[2] | ZHAO Yu-jie, CHEN Mei-fen, LI Xin, ZHANG Zi-hong, HUANG Jin-wen, HUANG Jun-ming, ZHANG Kun, LI Dong-li. Acute Toxicity and Genotoxicity Test Study of Extracts from Millettia speciosa Roots [J]. Subtropical Plant Science, 2023, 52(3): 197-202. |
[3] | QI Jun. Effect of Different Soil Moisture on Root Growth and Architecture of Cinnamomum camphora [J]. Subtropical Plant Science, 2022, 51(1): 19-25. |
[4] | CHENG Dan-dan, LUO Xiao, WANG Shi-yue, LUO Zhen-hui, YUAN Wen-peng. Analysis of Total Flavonoids in Moutan Cortex from Different Sources [J]. Subtropical Plant Science, 2021, 50(04): 262-266. |
[5] | ZHAO Lu-yan, LI Rong-ping,?WU Jin-song. Optimization of Rooting Conditions in Tissue-cultured Seedlings of Nicotiana attenuata and Its Applications [J]. Subtropical Plant Science, 2021, 50(03): 175-181. |
[6] | YE Xiao-ping, HUANG Yong-fang, TAN Sha, LI Meng-nan, DAI Qiu-yue. Biochemical Characteristics of Camellia oleifera Cutting in Rooting Process [J]. Subtropical Plant Science, 2021, 50(02): 101-105. |
[7] | SU Shi-cheng, WEI Xiao-li, JIN Nian-qing, ZHOU Zi-jing, SHAO Chang-chang, TIAN Yu-feng. Effects of Fertilization on Growth, Root Nodulation and Mineral Nutrition of Ormosia hosiei Seedlings [J]. Subtropical Plant Science, 2021, 50(01): 1-8. |
[8] | BAI Ya-zhu, LIANG Shi, CHEN Liang-hua, HUANG Wen, XU Chuan-jun, TONG Qing-xuan, LIN He-tong, MING Yan-lin. Biological Activity of Ethanol Extract from Root of Zingiber striolatum [J]. Subtropical Plant Science, 2019, 48(04): 321-328. |
[9] | MENG Hong-yan, WANG Wen-hua, ZHANG Chun-yi. Root Development in Arabidopsis Folylpolyglutamate Synthetase Mutant adtfb under Low-nitrogen Condition [J]. Subtropical Plant Science, 2018, 47(03): 199-206. |
[10] | YANG Yang, ZHOU Wen-chao. Tissue Culture Technology of Cymbidium hybridum [J]. Subtropical Plant Science, 2018, 47(03): 277-280. |
[11] | WU Xiao,ZHOU Jin-xin,WENG Le,CHEN Xin-lu,CHEN Mo-shun. Anatomical Features of Vegetative Organs of Sesbania cannabina [J]. Subtropical Plant Science, 2018, 47(02): 128-133. |
[12] | HUANG Shu-yan,ZHENG Yu-shan. Effects of Precursors Addition on Adventitious Root Induction and the Triptolide Content in Tissue Culture of Tripterygium wilfordii [J]. , 2017, 46(03): 240-243. |
[13] | XU Peng-yang,CHEN Wei-li,ZHU Hong-hui,LI Juan,CHEN Jie-zhong,YAO Qing . Regulative Effects of Arbuscular Mycorrhizal Fungus, P and Auxin on the Lateral Root Formation of Poncirus trifoliata [J]. , 2016, 45(03): 216-220. |
[14] | LIN Mei-zhen,CHEN Yu-qing,CHEN Mei-yan,TIAN Hui-qiao. Comparison爋n燤icrostructure of Anoectochilus roxburghii and A. formosanus [J]. , 2016, 45(03): 279-282. |
[15] | HE Tao,SU Dan-ping,LI Nan,LI Wei,CUI Da-fang. Effects of Plant Growth Regulators and Substrate on the Cutting Rooting of Camelia edithae [J]. Subtropical Plant Science, 2016, 45(01): 83-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||