[1] Yang X, Zhang Z C, Gu T, Dong M C, Peng Q, Bai L Y, Li Y F. Quantitative proteomics reveals ecological fitness cost of multi herbicide resistant barnyardgrass (Echinochloa crusgalli L.)[J]. Journal of Proteomics, 2017,150: 160—169.
[2] Heap I. International survey of herbicide resistant weeds. http://www.weedscience.com, 2018.
[3] Sunohara Y, Matsumoto H. Oxidative injury induced by the herbicide quinclorac on Echinochloa oryzicola Vasing. and the involvement of antioxidative ability in its highly selective action in grass species[J]. Plant Science, 2004,167(3): 597—606.
[4] 马国兰,柏连阳,刘都才,刘雪源,余柳青. 我国长江中下游稻区稗草对二氯喹啉酸的抗药性研究[J]. 中国水稻科学, 2013,27(2): 184—190.
[5] Salehin M, Bagchi R, Estelle M. SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development[J]. Plant Cell, 2015,27(1): 9—19.
[6] Li G, Xu M F, Chen L P, Cai L M, Bai L Y, Wu C X. A novel EcGH3 gene with a different expression pattern in quinclorac—resistant and susceptible barnyardgrass (Echinochloa crusgalli)[J]. Plant Gene, 2016,5: 65—70.
[7] Xu J Y, Lv B, Wang Q, Li J, Dong L Y. A resistance mechanism dependent upon the inhibition of ethylene biosynthesis[J]. Pest Management Science, 2013,69(12): 1407—1414.
[8] Fipke M V, Vidal R A. Integrative theory of the mode of action of quinclorac: literature review[J]. Planta Daninha, 2016,34: 393—402.
[9] Gao Y, Li J, Pan X K, Liu D R, Napier R, Dong L Y. Quinclorac resistance induced by the suppression of the expression of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase genes in Echinochloa crusgalli var. zelayensis[J]. Pesticide Biochemistry and Physiology, 2018,146: 25—32.
[10] Grossmann K, Kwiatkowski J. Selective induction of ethylene and cyanide biosynthesis appears to be involved in the selectivity of the herbicide quinclorac between rice and barnyardgrass[J]. Journal of Plant Physiology, 1993,142(4): 457—466.
[11] Grossmann K, Kwiatkowski J. The mechanism of quinclorac selectivity in grasses[J]. Pesticide Biochemistry and Physiology, 2000,66(2): 83—91.
[12] Grossmann K. Auxin herbicides: current status of mechanism and mode of action[J]. Pest Management Science, 2010,66: 113—120.
[13] Gao Y, Pan L, Sun Y, Zhang T, Dong L Y, Li J. Resistance to quinclorac caused by the enhanced ability to detoxify cyanide and its molecular mechanism in Echinochloa crusgalli var. zelayensis[J]. Pesticide Biochemistry and Physiology, 2017,143: 231—238.
[14] Peng Q, Wang H Q, Tong J H, Kabir M H, Huang Z G, Xiao L T. Effects of indole-3-acetic acid and auxin transport inhibitor on auxin distribution and development of at pegging stage[J]. Scientia Horticulturae, 2013,162: 76—81.
[15] Yu Q, Powles S. Metabolism-based herbicide resistance and cross-resistance in crop weeds: A threat to herbicide sustainability and global crop production[J]. Plant Physiology, 2014,166: 1106—1118.
[16] 李晶新. 二氯喹啉酸对烤烟生理特性影响的研究[D]. 河南: 河南农业大学硕士学位论文, 2010.
[17] Durian G, Rahikainen M, Alegre S. Protein phosphatase 2A in the regulatory network underlying biotic stress resistance in plants[J]. Frontiers in Plant Science, 2016,6(7): 1—17.
[18] 陈晶. 生长素类物质对镉胁迫下玉米幼苗生长及生理特性的影响[D]. 重庆: 西南大学硕士学位论文, 2016.
[19] 李永丰,张自常,杨霞,董明超,张彬,韩建勇. 稻田稗属杂草对芳氧苯氧丙酸酯类除草剂的差异敏感性及其机理[J]. 江苏农业学报, 2015,31(3): 543—551.
[20] 徐江艳. 稻田西来稗(Echinochloa crusgalli var. zelayemis)对二氯喹啉酸的抗药性及其机理研究[D]. 南京: 南京农业大学硕士学位论文, 2013.
[21] 陈晶,庞思琪,赵秀兰. 外源生长素对镉胁迫下玉米幼苗生长及抗氧化系统的影响[J]. 植物生理学报, 2016,52(8): 1191—1198.
[22] 李静,崔继哲,弭晓菊. 生长素与植物逆境胁迫关系的研究进展[J]. 生物技术通报, 2012(6): 13—17.
|