[1] 汤邝杰, 曾雷, 段金龙, 王志宏, 徐巧林, 刘小华, 郑奕雄. 基于低温研磨结合HS-SPME-GC-MS测定竹叶榕不同部位挥发性成分[J]. 中药材, 2024(10): 2527–2534.
[2] 陈其浒. 穗条年龄、扦插季节及外源激素对竹叶榕扦插育苗的影响[J]. 林业勘察设计, 2023, 43(1): 62–64.
[3] 郑少云. 竹叶榕嫩枝扦插技术[J]. 林业科技通讯, 2015(11): 37–38.
[4] 谢宗万. 全国中草药汇编[M]. 北京: 人民卫生出版社, 1996.
[5] 胡秀玲, 黄智锋, 华碧春, 陈雪梅, 鲍红娟, 郑乾文, 黄铮. “牛奶仔根”的本草考证及其在龙岩客家药膳中的应用探讨[J/OL]. 陕西中医药大学学报, 2024: 1–4. [2025-04-01]. http:// kns.cnki.net/kcms/detail/61.1501.R.20240926.1130.002.html.
[6] 刘筱英. 竹叶榕嫩枝扦插培育方法[J]. 林业与生态, 2021(11): 40.
[7] 林恭武. 竹叶榕培育技术[J]. 中国园艺文摘, 2017, 33(4): 89–90.
[8] 罗晓锋, 颜沛沛, 叶炜, 周建金. 6种榕属植物挥发性成分比较分析[J]. 福建农林大学学报(自然科学版), 2021, 50(3): 413–419.
[9] 张晓琦, 姜薇薇, 王英, 李药兰, 叶文才. 竹叶榕根中的一个新苯丙酸酯[J]. 药学学报, 2008(3): 281–283.
[10] 姜薇薇, 张晓琦, 李茜, 叶文才, 姚新生. 竹叶榕根的化学成分研究[J]. 天然产物研究与开发, 2007(4): 588–590.
[11] 杨思雨, 池玉洁, 张海琼, 梅洋, 汪思雨, 刘迪, 刘义飞. 基于广泛靶向代谢组学分析不同基原黄连根茎次生代谢物差异[J]. 中国中药杂志, 2024, 49(20): 5441–5450.
[12] 吕虹瑞, 武珍珍, 洪沙沙, 贾慧敏, 郭尚. 基于超高效液相色谱–串联质谱技术的黄花菜不同器官萜类代谢物差异分析[J]. 食品与发酵工业, 2024, 50(12): 299–307.
[13] Chen Y L, Liu C M, Yang F, Chen H, Yang C, Fan Z Y. UPLC- QQQ-MS/MS-based widely targeted metabolomic analysis, antioxidant and α-glucosidase inhibitory activities of mulberry leaves processed by solid-state fermentation [J]. Food Science and Technology / Lebensmittel-Wissenschaft und-Technologie, 2023,188. doi: 10.1016/j.lwt.2023.115351.
[14] 夏诗琪, 周成钏, 郭昌庆, 王甜, 邵齐飞, 赖建斌, 刘丽婷, 欧阳天林. 基于广泛靶向代谢组学分析花榈木不同部位挥发性代谢物差异[J]. 天然产物研究与开发, 2023, 35(12): 2027–2039.
[15] 李沛霞, 甘南湘, 晋艳, 刘晓梅, 金虹, 黄毅.大孔树脂分离川麦冬须根中总黄酮和总皂苷的工艺研究[J]. 食品科技, 2020, 45(5): 221–227.
[16] Zeng L, Chen Y L, Liang L T, Yang L, Wang S, Li Q G, Wang Z L. Comparison of different parts of Plumbago zeylanica L. through UPLC-MS/MS metabolite profiling and evaluation of their antioxidant and antifungal potential [J]. Pharmacological Research–Natural Products, 2024, 5: 100118.
[17] Sowa B , Patrycja J , Wac?aw D , Ma?gorzata. The Effect of sowing density and different harvesting stages on yield and some forage quality characters of the white sweet clover (Melilotus albus) [J]. Agriculture, 2022, 12(5): 575.
[18] Osowe C O, Olowu O, Adu O A, Oloruntola O D, Chineke C A. Proximate and mineral composition, phytochemical analysis, and antioxidant activity of fig trees (Ficus spp.) leaf powder [J]. Asian Journal of Biochemistry, Genetics and Molecular Biology, 2021, 9(1): 19–29.
[19] Hassan H A, Attia E Z, Desoukey S Y, Mohamed K M, Kamel M S. Quantitative analysis of total phenolic and total flavonoid constituents of some Ficus species [J]. Journal of Advanced Biomedical and Pharmaceutical Sciences, 2019, 2(1): 38–40.
[20] Mansor H, Mohd A S, Ahmad S, Maziah M. Total antioxidant, polyphenol, phenolic acid, and flavonoid content in Ficus deltoidea varieties [J]. Journal of Medicinal Plants Research, 2012, 6(33): 4776–4784.
[21] Mahendra C K, Tan L T H, Lee W L, Yap W H, Pusparajah P, Low L E, Goh B H. Angelicin–A furocoumarin compound with vast biological potential [J]. Frontiers in Pharmacology, 2020,11: 366.
[22] Sumorek-Wiadro J, Zaj?c A, Maciejczyk A, Jakubowicz Gil J. Furanocoumarins in anticancer therapy – For and against [J]. Fitoterapia, 2020, 142: 104492. doi: 10.1016/j.fitote.2020. 104492.
[23] Luo T, Jia X, Feng W, Wang Y, Xie F, Kong L D, Xu L. Bergapten inhibits NLRP3 inflammasome activation and pyroptosis via promoting mitophagy [J]. Acta Pharmacologica Sinica, 2023, 44(9): 1867–1878.
[24] Elhawary S S, Younis I Y, El Bishbishy M H, Khattab A R. LC-MS/MS-based chemometric analysis of phytochemical diversity in 13 Ficus spp. (Moraceae): Correlation to their in vitro antimicrobial and in silico quorum sensing inhibitory activities [J]. Industrial Crops and Products, 2018, 126: 261–271.
[25] Wang Y, Liu X, Chen S, Wang Q, Jin B, Wang L. Functions, accumulation, and biosynthesis of important secondary metabolites in the fig tree (Ficus carica) [J]. Frontiers in Plant Science, 2024, 15: 1397874.
[26] Yunus S N M, Zolkeflee N K Z, Jaafar A H, Abas F. Metabolite identification in different fractions of Ficus auriculata Loureiro fruit using the 1H-NMR metabolomics approach and UHPLC- MS/MS [J]. South African Journal of Botany, 2021, 138: 348–363.
[27] Li J, Ma N, An Y, Wang Y. FcMADS9 of fig regulates anthocyanin biosynthesis [J]. Scientia Horticulturae, 2021, 278: 109820.
[28] Ammar S, Del Mar Contreras M, Belguith-Hadrich O, Segura-Carretero A, Bouaziz M. Assessment of the distribution of phenolic compounds and contribution to the antioxidant activity in Tunisian fig leaves, fruits, skins and pulps using mass spectrometry-based analysis [J]. Food & Function, 2015, 6(12): 3663–3677.
[29] 陈旭, 黄国宁, 林旭俊, 陆文, 钱小香, 郭霞, 李善志. 基于定量代谢组学分析不同种源薜荔叶片类黄酮含量差异[J]. 贵州农业科学, 2024, 52(9): 100–108.
[30] 诸姮, 胡宏友, 卢昌义, 李雄. 植物体内的黄酮类化合物代谢及其调控研究进展[J]. 厦门大学学报(自然科学版), 2007(1): 136–143.
[31] 乔小燕, 马春雷, 陈亮. 植物类黄酮生物合成途径及重要基因的调控[J]. 天然产物研究与开发, 2009, 21(2): 354–360.
[32] 谢靖雯, 曹晓云, 潘婉琪, 杜灵娟. 植物类黄酮转运与积累机制的研究进展[J]. 植物学报, 2024, 59(3): 463–480.
[33] Li Y, Kong D, Fu Y, Sussman M R, Wu H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants [J]. Plant WANG Zhi-hongPhysiology and Biochemistry, 2020, 148: 80–89.
[34] Dong N, Lin H. Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions [J]. Journal of Integrative Plant Biology, 2021, 63(1): 180–209.
[35] Zhang S, Jiang Z F, Pan Q, Song C Y, & Zhang W H. Anti-cancer effect of naringenin chalcone is mediated via the induction of autophagy, apoptosis and activation of PI3K/Akt signalling pathway [J]. Bangladesh Journal of Pharmacology, 2016, 11(3): 684–690.
[36] Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity [J]. Food Chemistry, 2022, 383: 132531.
[37] Motallebi M, Bhia M, Rajani H F, Bhia I, Tabarraei H, Mohammadkhani N, Shakibaei M. Naringenin: A potential flavonoid phytochemical for cancer therapy [J]. Life Sciences, 2022, 305: 120752.
[38] Negahdari R, Bohlouli S, Sharifi S, Maleki Dizaj S, Rahbar Saadat Y, Khezri K, Raeesi S. Therapeutic benefits of rutin and its nanoformulations [J]. Phytotherapy Research, 2021, 35(4): 1719–1738.
[39] Shui L, Wang W, Xie M, Ye B, Li X, Liu Y, Zheng M. Isoquercitrin induces apoptosis and autophagy in hepatocellular carcinoma cells via AMPK/mTOR/p70S6K signaling pathway [J]. Aging, 2020, 12(23): 24318–24332.
[40] Islam A, Islam M S, Rahman M K, Uddin M N, Akanda M R. The pharmacological and biological roles of eriodictyol [J]. Archives of Pharmacal Research, 2020, 43(6): 582–592.
[41] Yao C, Dai S, Wang C, Fu K, Wu R, Zhao X, Li Y. Luteolin as a potential hepatoprotective drug: Molecular mechanisms and treatment strategies [J]. Biomedicine& Pharmacotherapy, 2023, 167: 115464.
[42] Ni J, Guo Y, Chang N, Cheng D, Yan M, Jiang M, Bai G. Effect of N-methyltyramine on the regulation of adrenergic receptors via enzymatic epinephrine synthesis for the treatment of gastrointestinal disorders [J]. Biomedicine& Pharmacotherapy, 2019, 111: 1393–1398.
|