[1] 国家药典委员会. 中华人民共和国药典. 一部[S]. 北京: 中国医药科技出版社, 2020: 293.
[2] 王海强, 周千瑶, 李冰琪, 王瑶. 柴胡化学成分及药理作用研究进展[J]. 吉林中医药, 2024, 44(1): 96–100.
[3] 杨晰雯, 胡文凯, 蒋鑫, 张萌萌, 刘秋月, 刘树民, 卢芳. 柴胡化学成分及药理作用研究进展[J]. 药学前沿, 2024, 28(11): 507–522.
[4] 于海娇, 窦瑶, 朱邦语. 柴胡的化学成分及药理作用研究分析综述[J]. 特种经济动植物, 2024, 27(11): 107–109.
[5] Li H, Lin J Y, Bai B Q, Bo T, He Y F, Fan S H, Zhang J H. Study on purification, identification and antioxidant of flavonoids extracted from Perilla leaves [J]. Molecules, 2023, 28(21): 7273.
[6] Chen G L, Fan M X, Wu J L, Li N, Guo M Q. Antioxidant and anti-inflammatory properties of flavonoids from lotus plumule [J]. Food Chemistry, 2018, 277: 706–712.
[7] Maleki J S, Crespo F J, Cabanillas B. Anti-inflammatory effects of flavonoids [J]. Food Chemistry, 2019, 299: 125124.
[8] Lorena C, Vasile M M, Octavia R, Cristian V S, Liana A R, Vasile N, Georgiana P, Ioan V D, Gabriela T A, Ioana P, Gabriela. The effects of flavonoids in cardiovascular diseases [J]. Molecules, 2020, 25(18): 4320.
[9] Burada P B, C?r?c I A, Begea M. Anti-aging effects of flavonoids from plant extracts [J]. Foods, 2024, 13(15): 2441.
[10] 杨林林, 赵钰, 韩梅, 杨利民. 北柴胡和狭叶柴胡中黄酮类成分及其关键酶基因表达的组织差异分析[J]. 中草药, 2019, 50(1): 188–194.
[11] 谭玲玲, 侯晓敏, 胡正海. 狭叶柴胡营养器官中柴胡皂苷和黄酮类化合物的积累部位及含量比较[J]. 西北植物学报, 2014, 34(2): 276–281.
[12] Wang Y, Tong Y, Isaiah O A, Wang Y, Liu A. Research advances in multi-omics on the traditional Chinese herb Dendrobium officinale [J]. Frontiers in Plant Science, 2022, 12: 808228.
[13] Feng Y, Gao X X, Meng M D, Xue H H, Qin X M. Multi-omics reveals the mechanisms of antidepressant-like effects of the low polarity fraction of Bupleuri Radix [J]. Journal of Ethnopharmacology, 2020, 256: 112806.
[14] Xie Z H, Xie Z Y, Trujillo N P, Yang T, Yang C X. Exploring mechanisms of Chaihu-Shugan-San against liver fibrosis by integrated multi-omics and network pharmacology approach [J]. Bioscience Reports, 2022, 42(7): BSR20221030.
[15] Yu M, Chen H, Liu S H, Li Y C, Sui C, Hou D B, Wei J H. Differential expression of genes involved in saikosaponin biosynthesis between Bupleurum chinense DC. and Bupleurum scorzonerifolium Willd [J]. Frontiers in Genetics, 2020, 11: 583245.
[16] Sun C L, Ma S S, Li L L, Wang D J, Wang X. Visualizing the distributions and spatiotemporal changes of metabolites in Panax notoginseng by MALDI mass spectrometry imaging [J]. Journal of Ginseng Research, 2021, 45(6): 726–733.
[17] Han X W, Ma D L, Wang J M, Pei L, Liu L D, Shi W H, Rong Z P, Wang X Y, Zhang Y, Zheng Y G, Sun H G Spatial mapping of bioactive metabolites in the roots of three Bupleurum species by matrix-assisted laser desorption/ionization mass spectrometry imaging [J]. Molecules, 2024, 29(16): 3746.
[18] Vogt T. Phenylpropanoid biosynthesis [J]. Molecular Plant, 2010, 3(1): 2–20.
[19] Saini N, Anmol A, Kumar S, Wani W A, Bakshi M, Dhiman Z. Exploring phenolic compounds as natural stress alleviators in plants a comprehensive review [J]. Physiological and Molecular Plant Pathology, 2024, 133: 102383.
[20] Yu M Z, Wang M, Gyalpo T, Basang Y.. Stem lodging resistance in hulless barley: Transcriptome and metabolome analysis of lignin biosynthesis pathways in contrasting genotypes [J]. Genomics, 2020, 113: 935–943.
[21] Kohei N, Hao L, Takuji I, Kanade T, Keishi O, Bunta W, Koichiro S, Kazufumi Y. Peroxisomal 4-coumaroyl-CoA ligases participate in shikonin production in Lithospermum erythrorhizon [J]. Plant Physiology, 2024, 195(4): 2843–2859.
[22] Lewis A J, Jacobo P E, Palmer N, Vermerris W, Sattler E S, Brozik A J, Sarath G, Kang C. Structural and interactional analysis of the flavonoid pathway proteins: chalcone synthase, chalcone isomerase and chalcone isomerase–like protein [J]. International Journal of Molecular Sciences, 2024, 25(11): 5651.
[23] Tong Y J, Li N, Zhou S H, Zhang L, Xu S, Zhou J W. Improvement of chalcone synthase activity and high-efficiency fermentative production of (2S)-Naringenin via in vivo biosensor–guided directed evolution [J]. ACS Synthetic Biology, 2024, 13(5): 1454–1466.
[24] Rencoret J, Rosado M J, Kim Hoon, Timokhin V I, Gutiérrez A, Bausch F, Rosenau T, Potthast A, Ralph J, Del C. Flavonoids naringenin chalcone, naringenin, dihydrotricin, and tricin are lignin monomers in papyrus [J]. Plant Physiology, 2021, 188(1): 208–219.
[25] Li D, Rui Y X, Guo S D, Luan F, Liu R, Zeng N. Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives [J]. Life Sciences, 2021, 284: 119921.
[26] Choudhary N, Pucker B. Conserved amino acid residues and gene expression patterns associated with the substrate preferences of the competing enzymes FLS and DFR [J]. PloS One, 2024, 19(8): e0305837.
[27] Xing M Y, Cao Y L, Ren C H, Liu Y L, Li J J, Grierson D, Martin C, Sun C D, Chen K S, Xu C J, Li X. Elucidation of myricetin biosynthesis in Morella rubra of the Myricaceae [J]. The Plant Journal: for Cell and Molecular Biology, 2021, 108(2): 411–425.
[28] Lorena M F F, Sebastian R, Julia E, Lucille P, Antje F, Kengo M, Paula C, Erich G. Cloning and characterization of a UV-B-inducible maize flavonol synthase [J]. The Plant Journal: for Cell and Molecular Biology, 2010, 62(1): 77–91.
[29] Liu L, Zhang Y Y, Jiang X, Du B G, Wang Q, Ma Y L, Liu M, Mao Y P, Yang J T, Li F R, Fu H B. Uncovering nutritional metabolites and candidate genes involved in flavonoid metabolism in Houttuynia cordata through combined metabolomic and transcriptomic analyses [J]. Plant Physiology and Biochemistry, 2023, 203: 108059.
[30] Wang Z, Wang S S, Wu M Z, Li Z F, Liu P P, Li F, Chen Q S, Yang A G, Yang J. Evolutionary and functional analyses of the 2-oxoglutarate-dependent dioxygenase genes involved in the flavonoid biosynthesis pathway in tobacco [J]. Planta, 2018, 249(2): 543–561.
|