[1] Patwardhan A, Ray S, Roy A. Molecular markers in phylogenetic studies-a review[J]. Journal of Phylogenetics & Evolutionary Biology, 2014,2(2): 1000131.
[2] Gupta P K, Rustgi S, Kulwal P L. Linkage disequilibrium and association studies in higher plants: present status and future prospects[J]. Plant Molecular Biology, 2005,57(4): 461—485.
[3] 万志兵,戴晓港,尹佟明. 林木遗传育种基础研究热点述评[J]. 林业科学, 2012,48(2): 150—154.
[4] Vignal A, Milan D, SanCristobal M, Eggen A. A review on SNP and other types of molecular markers and their use in animal genetics[J]. Genetics Selection Evolution, 2002,34(3): 275.
[5] Wang D G, Fan J B, Siao C J, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome[J]. Science, 1998,280(5366): 1077—1082.
[6] 杨永强,王巍杰,徐长波. 单核苷酸多态性研究进展[J]. 化学与生物工程, 2009,26(8): 19—21.
[7] Loots G G, Locksley R M, Blankespoor C M, Wang Z E, Miller W, Rubin E M, Frazer K A. Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons[J]. Science, 2000,288(5463): 136—140.
[8] Snowdon R J, Luy F L I. Potential to improve oilseed rape and canola breeding in the genomics era[J]. Plant Breeding, 2012,131(3): 351—360.
[9] Liu L Z, Qu C M, Wittkop B, Yi B, Xiao Y, He Y J, Snowdon R J, Li J N. A high-density SNP map for accurate mapping of seed fiber QTL in Brassica napus L.[J]. PLoS One, 2013,8(12): e83052.
[10] 刘列钊,李加纳. 利用甘蓝型油菜高密度SNP遗传图谱定位油酸、亚麻酸及芥酸含量QTL位点[J]. 中国农业科学, 2014,47(1): 24—32.
[11] Wang N, Li F, Chen B Y, Xu K, Yan G X, Qiao J W, Li J, Gao GZ, Bancroft I, Meng J L, King G J, Wu X M. Genome-wide investigation of genetic changes during modern breeding of Brassica napus[J]. Theoretical and Applied Genetics, 2014,127(8): 1817—1829.
[12] 桑世飞,王会,梅德圣,刘佳,付丽,王军,汪文祥,胡琼. 利用全基因组 SNP芯片分析油菜遗传距离与杂种优势的关系[J]. 中国农业科学, 2015,48(12): 2469—2478.
[13] Cabezas J A, Ibá?ez J, Lijavetzky D, Vélez D, Bravo G, Rodríguez V, Carre?o I, Jermakow A M, Carre?o J, Ruiz-García L, Thomas M R. A 48 SNP set for grapevine cultivar identification[J]. BMC Plant Biology, 2011,11(1): 153.
[14] Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley C T, Gasic K, Micheletti D, Rosyara U R, Cattonaro F, Vendramin E, Main D. Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm[J]. PLoS One, 2012,7(4): e35668.
[15] Chen C, Mitchell S E, Elshire R J, Buckler E S, El-Kassaby Y A. Mining conifers’ mega-genome using rapid and efficient multiplexed high-throughput genotyping-by-sequencing (GBS) SNP discovery platform[J]. Tree Genetics & Genomes, 2013,9(6):1537—1544.
[16] Jiang D, Ye Q L, Wang F S, Li C A. The mining of citrus EST-SNP and its application in cultivar discrimination[J]. Agricultural Sciences in China, 2010,9(2): 179—190.
[17] Fang W P, Meinhardt L W, Tan H W, Zhou L, Mischke S, Zhang D. Varietal identification of tea (Camellia sinensis) using nanofluidic array of single nucleotide polymorphism (SNP) markers[J]. Horticulture Research, 2014,1: 14035.
[18] Wang B, Tan H W, Fang W, Meinhardt L W, Mischke S, Matsumoto T, Zhang D. Developing single nucleotide polymorphism (SNP) markers from transcriptome sequences for identification of longan (Dimocarpus longan) germplasm[J]. Horticulture Research, 2015,2(1): 14065.
[19] Zhou L, Vega F E, Tan H, Lluch A E, Meinhardt L W, Fang W, Mischke S, Irish B, Zhang D. Developing single nucleotide polymorphism (SNP) markers for the identification of coffee germplasm[J]. Tropical Plant Biology, 2016, 9(2): 82—95.
[20] 洪彦彬,李杏瑜,梁炫强. 植物SNP的开发研究进展[J]. 分子植物育种, 2011,9: 1807—1817.
[21] Li L, Paulo M J, Strahwald J, Lübeck J, Hofferbert H R, Tacke E, Junghans H, Wunder J, Draffehn A, van Eeuwijk F, Gebhardt C. Natural DNA variation at candidate loci is associated with potato chip color, tuber starch content, yield and starch yield[J]. Theoretical and Applied Genetics, 2008,116(8): 1167—1181.
[22] Westermeier P, Wenzel G, Mohler V. Development and evaluation of single-nucleotide polymorphism markers in allotetraploid rapeseed (Brassica napus L.)[J]. Theoretical and Applied Genetics, 2009,119(7): 1301—1311.
[23] Chao S, Zhang W, Akhunov E, Sherman J, Ma Y, Luo M C, Dubcovsky J. Analysis of gene-derived SNP marker polymorphism in US wheat (Triticum aestivum L.) cultivars[J]. Molecular Breeding, 2009,23: 23—33.
[24] Weirather J L, de Cesare M, Wang Y, Piazza P, Sebastiano V, Wang X J, Buck D, Au K F. Comprehensive comparison of pacific biosciences and oxford nanopore technologies and their applications to transcriptome analysis[J]. F1000Research, 2017(3): 6.
[25] Schmidt M H, Vogel A, Denton A, Istace B, Wormit A, van de Geest H, Bolger M E, Alseekh S, Mass J, Pfaff C, Schurr U. Reconstructing the gigabase plant genome of Solanum pennellii using nanopore sequencing[J]. Biorxiv, 2017(1): 129148.
[26] Tsuchihashi Z, Dracopoli N C. Progress in high throughput SNP genotyping methods[J]. The Pharmacogenomics Journal, 2002,2(2): 103—110.
[27] Thiel T, Kota R, Grosse I, Stein N, Graner A. SNP 2 CAPS: a SNP and INDEL analysis tool for CAPS marker development[J]. Nucleic Acids Research, 2004,32(1): e5.
[28] Drenkard E, Richter B G, Rozen S, Stutius L M, Angell N A, Mindrinos M, Cho R J, Oefner P J, Davis R W, Ausubel F M. A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis[J]. Plant Physiology, 2000,124(4): 1483—1492.
[29] Helyar S J, Limborg M T, Bekkevold D, Babbucci M, Van Houdt J, Maes G E, Bargelloni L, Nielsen R O, Taylor M I, Ogden R, Cariani A. SNP Discovery using next generation transcriptomic sequencing in atlantic herring (Clupea harengus)[J]. PLoS ONE, 2012,7(8): e42089.
[30] Boutet G, Carvalho S A, Falque M, Peterlongo P, Lhuillier E, Bouchez O, Lavaud C, Pilet-Nayel M L, Rivière N, Baranger A. SNP discovery and genetic mapping using genotyping by sequencing of whole genome genomic DNA from a pea RIL population[J]. BMC Genomics, 2016,17(1): 121.
[31] Distefano G, La Malfa S, Gentile A, Wu S B. EST-SNP genotyping of citrus species using high-resolution melting curve analysis[J]. Tree Genetics & Genomes, 2013,9(5): 1271—1281.
[32] Pootakham W, Chanprasert J, Jomchai N, Sangsrakru D, Yoocha T, Therawattanasuk K, Tangphatsornruang S. Single nucleotide polymorphism marker development in the rubber tree, Hevea brasiliensis (Euphorbiaceae)[J]. American Journal of Botany, 2011, 98(11): e337—e338.
[33] Ji K, Zhang D, Motilal L A, Boccara M, Lachenaud P, Meinhardt L W. Genetic diversity and parentage in farmer varieties of cacao (Theobroma cacao L.) from Honduras and Nicaragua as revealed by single nucleotide polymorphism (SNP) markers[J]. Genetic Resources and Crop Evolution, 2013,60(2): 441—453.
[34] Ferguson M E, Hearne S J, Close T J, Wanamaker S, Moskal W A, Town C D, de Young J, Marri P R, Rabbi I Y, de Villiers E P. Identification, validation and high-throughput genotyping of transcribed gene SNPs in cassava[J]. Theoretical and Applied Genetics, 2012,124(4): 685—695.
[35] 赵俊生,杨晓燕,曾祥有,钟声,方静,罗剑斌,曾运友,向旭. 利用SNP分子标记分析化橘红种质资源[J]. 分子植物育种, 2016,14(5):1203—1211.
[36] Karam M J, Lefèvre F, Dagher-Kharrat M B, Pinosio S, Vendramin G G. Genomic exploration and molecular marker development in a large and complex conifer genome using RADseq and mRNAseq[J]. Molecular Ecology Resources, 2015,15(3): 601—612.
[37] Ogden R, McGough H N, Cowan R S, Chua L, Groves M, McEwing R. SNP-based method for the genetic identification of ramin Gonystylus spp. timber and products: applied research meeting CITES enforcement needs[J]. Endangered Species Research, 2008,9(3): 255—261.
[38] 孙清明,李永忠,向旭,陈道明,杨晓燕,方静,吴绪波,周东辉,马帅鹏,马文朝. 利用SNP和EST-SSR分子标记鉴定荔枝新种质御金球[J]. 分子植物育种, 2013,11(3): 403—414.
[39] 杨润婷,吴波,李翀,曾培,曾继吾,钟云,姜波,周碧容,钟广炎. 两种SNP分型方法的比较及其在柚品种鉴定中的应用[J]. 园艺学报, 2013,40(6): 1061—1070.
[40] Hakim I R, Kammoun N G, Makhloufi E, Reba? A. Discovery and potential of SNP markers in characterization of Tunisian olive germplasm[J]. Diversity, 2009,2(1): 17—27.
[41] Jones E S, Sullivan H, Bhattramakki D, Smith J S. A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (Zea mays L.)[J]. Theoretical and Applied Genetics, 2007,115(3): 361—371.
[42] Saha T, Priyadarshan P M. Genomics of Hevea rubber[M]// Schnell R J, Priyadarshan P M. Genomics of Tree Crops. New York : Springer New York, 2012: 261—298.
[43] 张晓红. 桉树EST-SNP的开发及EST图谱构建[D]. 南京: 南京林业大学硕士学位论文, 2009.
[44] 蒋俊. 桃高密度SNP图谱构建于果实质地和酸度全基因组关联分析[D]. 杭州: 浙江大学硕士学位论文, 2016.
[45] Septiningsih E M, Pamplona A M, Sanchez D L, Neeraja C N, Vergara G V, Heuer S, Ismail A M, Mackill D J. Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond[J]. Annals of Botany, 2009,103(2): 151—160.
[46] Naidoo R, Watson G M, Derera J, Tongoona P, Laing M D. Marker-assisted selection for low phytic acid (lpa1-1) with single nucleotide polymorphism marker and amplified fragment length polymorphisms for background selection in amaize backcross breeding programme[J]. Molecular Breeding, 2012,30(2): 1207—1217.
[47] Rahman M U, Asif M, Shaheen T, Tabbasam N, Zafar Y, Paterson A H. Marker-assisted breeding in higher plants[J]. Alternative Farming Systems, Biotechnology, Drought Stress and Ecological Fertilisation Sustainable Agriculture Reviews, 2011(6): 39—76.
[48] 刘肖. 蓝莓抗寒性、需冷量SNP分析与分子辅助育种研究[D]. 北京: 北京林业大学硕士学位论文, 2013.
|