[1] Elser J J, Fagan W F, Denno R F, Dobberfuhl D R, Folarin A, Huberty A, Interlandi S, Kilham S S, McCauley E, Schulz K L, Siemann E H, Sterner R W. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000,408(6812): 578–580.
[2] Hessen D O. Stoichiometry in food webs: Lotka Revisited[J]. Oikos, 1997,79(1): 195–200.
[3] 蒋利玲,何诗,吴丽凤,颜远烽,翁少峰,刘静,王维奇,曾从盛. 闽江河口湿地3种植物化学计量内稳性特征[J]. 湿地科学, 2014(3): 293–298.
[4] 贺金生,韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010,34(1): 2–6.
[5] 姚红艳,陈琴,肖冰雪. 植物生态化学计量学综述[J]. 草业与畜牧, 2013(2): 48–50.
[6] Sterner R W, Elser J J. Ecological stoichiometry: the biology of elements from molecules to the biosphere[M]. Princeton: Princeton University Press, 2002: 225–226.
[7] ?gren G I. The C:N:P stoichiometry of autotrophs-theory and observations[J]. Ecology Letters, 2004,7(3): 185–191.
[8] Yu Q, Elser J J, He N P, Wu H H, Chen Q S, Zhang G M, Han X G. Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland[J]. Oecologia, 2011,166(1): 1–10.
[9] Press M C. Dracula or Robin Hood? A functional role for root hemiparasites in nutrient poor ecosystems[J]. Oikos, 1998,82(3): 609–611.
[10] 李钧敏,董鸣. 植物寄生对生态系统结构和功能的影响[J]. 生态学报, 2011,31(4): 1174–1184.
[11] 黄新亚,管开云,李爱荣. 寄生植物的生物学特性及生态学效应[J]. 生态学杂志, 2011,30(8): 1838–1844.
[12] Hartley S E, Green J P, Massey F P, Press M C, Stewart A J A, John E A. Hemiparasitic plant impacts animal and plant communities across four trophic levels[J]. Ecology, 2015,96(9): 2408–2416.
[13] Koskela T. Variation in life–history traits among Urtica dioica populations with different history in parasitism by the holoparasitic plant Cuscuta europaea[J]. Evolutionary Ecology, 2002(16): 433–454.
[14] Cameron D D, Geniez J W, Seel L J, Irving L J. Suppression of host photosynthesis by the parasitic plant Rhinanthus minor[J]. Annals of Botany, 2008,101(4): 573–578.
[15] Ameloot E, Verheyen K, Hermy M. Meta-analysis of standing crop production by Rhinanthus spp. and its effect on vegetation structure[J]. Folia Geobotanica, 2005,40(2–3): 289–310.
[16] Aukema J E. Vectors, viscin, and Viscaceae: mistletoes as parasites, mutualists, and resources[J]. Frontiers in Ecology and Environment, 2003,1(4): 212–219.
[17] Ameloot E, Verlinden G, Boeckx P, Verheyen K, Hermy M. Impact of hemiparasitic Rhinanthus angustifolius and R. minoron nitrogen availability in grasslands[J]. Plant and Soil, 2008,311(1–2): 255–268.
[18] Tennakoon K U, Chak W H, Bolin J F. Nutritional and isotopic relationships of selected Bornean tropical mistletoehost associations in Brunei Darussalam[J]. Functional Plant Biology, 2011,38(6): 505–513.
[19] Chen L Z, Huang L, Li X F, You S Y, Yang S C, Zhang Y H, Wang W Q. Water and nutrient relationships between a mistletoe and its mangrove host under saline conditions[J]. Functional Plant Biology, 2013,40(5): 475.
[20] Gebauer R, Vola?ík D, Urban J. Seasonal variations of sulphur, phosphorus and magnesium in the leaves and current-year twigs of hemiparasitic mistletoe Loranthus europaeus Jacq. and its host Quercus pubescens Willd[J]. Journal of Forest Science, 2018,64(2): 66–73.
[21] 汤丹丹,吴毅,刘文耀,胡涛,黄俊彪,张婷婷. 云南哀牢山两种常见半寄生植物的生态化学计量特征及其与寄主的关系[J]. 植物生态学报, 2019,43(3): 245–257.
[22] Gebauer R, Vola?ík D, Urban J. Quercus pubescens and its hemiparasite Loranthus europaeus: Nutrient dynamics of leaves and twigs[J]. Acta Physiologiae Plantarum, 2012,34(5): 1801–1809.
[23] Myers N, Mittermeier R A, Mittermeier C G, Fonseca G A B, Kent J. Biodiversity hotspots for conservation priorities[J]. Nature. 2000,403(6772): 853–858.
[24] 李增加,马友鑫,李红梅,彭明春,刘文俊. 西双版纳土地利用/覆盖变化与地形的关系[J]. 植物生态学报, 2008,32(5): 1091–1103.
[25] 肖来云,普正和. 西双版纳桑寄生科植物的调查[J]. 云南植物研究, 1988,10(1): 69–78.
[26] 王煊妮,张玲. 西双版纳4种生境下的桑寄生与寄主植物多样性及分布特点[J]. 云南大学学报(自然科学版), 2017,39(4): 701–711.
[27] Li H M, Aide T M, Ma Y X, Liu W J, Cao M. Demand for rubber is causing the loss of high diversity rain forest in SW China[J]. Biodiversity and Conservation, 2007,16(6):1731–1745.
[28] 曹俊秀. 西双版纳热带植物园园区土壤理化性状分布特征调查[D]. 北京: 中国科学院研究生院硕士学位论文, 2009.
[29] 张婷婷,刘文耀,黄俊彪,胡涛,汤丹丹,陈泉. 植物生态化学计量内稳性特征[J]. 广西植物, 2019,39(5): 701–712.
[30] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of The National Academy of Sciences, 2004,101(30): 11001–11006.
[31] Han W X, Fang J Y, Guo D L, Zhang Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005,168(2): 377–385.
[32] Vitousek P M, Hedin L O, Matson P A, Fownes J H, Neff J. Within-system element cycles, input-output budgets, and nutrient limitation [M]// Pace M L. Successes, Limitations, and Frontiers in Ecosystem Science Successes. New York: Springer-Verlag New York, Inc. 1998: 432–451.
[33] 贺合亮,阳小成,李丹丹,尹春英,黎云祥,周国英,张林,刘庆. 青藏高原东部窄叶鲜卑花碳、氮、磷化学计量特征[J]. 植物生态学报, 2017,41(1): 126–135.
[34] 张珂,何明珠,李新荣,谭会娟,高艳红,李刚,韩国君,吴杨杨. 阿拉善荒漠典型植物叶片碳、氮、磷化学计量特征[J]. 生态学报, 2014,34(22): 6538–6547.
[35] 王振兴. 国内生态化学计量学研究进展[J]. 绿色科技, 2011(7): 195–196.
[36] Manuel D B, Maestre F T, Gallardo A, Bowker M A, Wallenstein M D, Quero J L, Ochoa V, Gozalo B, García-Gómez M, Soliveres S, García-Palacios, Berdugo M, Valencia E, Escolar C, Arredondo T, Barraza-Zepeda C, Bran D, Carreira J A, Chaieb M, Concei??o A A. Decoupling of soil nutrient cycles as a function of aridity in global drylands[J]. Nature, 2013,502 (31): 672–676.
[37] 任书杰,于贵瑞,陶波,官丽莉,方华军,姜春明. 兴安落叶松(Larix gmelinii Rupr.)叶片养分的空间分布格局[J]. 生态学报, 2009,29(4): 1899–1906.
[38] 罗艳,贡璐,朱美玲,安申群. 塔里木河上游荒漠区4种灌木植物叶片与土壤生态化学计量特征[J]. 生态学报, 2017(37): 8326–8335.
[39] 曾昭霞,王克林,刘孝利,曾馥平,宋同清,彭晚霞,张浩,杜虎. 桂西北喀斯特森林植物–凋落物–土壤生态化学计量特征[J]. 植物生态学报, 2015,39(7): 38–49.
[40] 曾冬萍,蒋利玲,曾从盛,王维奇,王纯. 生态化学计量学特征及其应用研究进展[J]. 生态学报, 2013,33(18): 5484–5492.
[41] Quested H M, Press M C, Callaghan T V, Cornelissen H J. The hemiparasitic angiosperm Bartsia alpina has the potential to accelerate decomposition in sub-arctic communities[J]. Oecologia, 2002,130(1): 88–95.
[42] Quested H M, Cornelissen J H C, Press M C, Press M C, Callaghan T V, Aerts R, Trosien F, Riemann P, Jones D G, Kondratchuk A, Jonasson S E. Decomposition of sub-arctic plants with differing nitrogen economies: A functional role for hemiparasites[J]. Ecology, 2003,84(12): 3209–3221.
[43] Quested H M, Press M C, Callaghan T V. Litter of the hemiparasite Bartsia alpina enhances plant growth: evidence for a functional role in nutrient cycling[J]. Oecologia, 2003,135(4): 606–614.
[44] 汤丹丹. 哀牢山常见木本附生、寄生植物生态化学计量特征及其与宿主、寄主的关系[D]. 北京: 中国科学院大学硕士学位论文, 2019.
[45] 吴统贵,吴明,刘丽,萧江华. 杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化[J]. 植物生态学报, 2010,34(1): 23–28.
[46] 杨惠敏,王冬梅. 草–环境系统植物碳氮磷生态化学计量学及其对环境因子的响应研究进展[J]. 草业学报, 2011,20(2): 244–252.
[47] 蒋利玲,曾从盛,邵钧炯,周旭辉. 闽江河口入侵种互花米草和本地种短叶茳芏的养分动态及植物化学计量内稳性特征[J]. 植物生态学报, 2017,41(4): 450–460. |