[1] 秦厚国, 汪笃栋, 丁建, 黄荣华, 叶正襄. 斜纹夜蛾寄主植物名录[J]. 江西农业学报, 2006(5): 51–58.
[2] 姚文辉. 斜纹夜蛾的生物学特性[J]. 华东昆虫学报, 2005(2): 122–127.
[3] 虞国跃, 张君明. 斜纹夜蛾的识别与防治[J]. 蔬菜, 2021(8): 82–83,89.
[4] 周晓梅, 黄炳球. 斜纹夜蛾抗药性及其防治对策的研究进 展[J]. 昆虫知识, 2002(2): 98–102.
[5] 陈秀红, 丁志宽, 林双喜, 王春兰, 朱素芹. 甜菜夜蛾、斜纹夜蛾和草地贪夜蛾的识别与防控[J]. 上海蔬菜, 2020(2): 43–44.
[6] 伍一军. 近二十年我国杀虫剂毒理学研究进展(Ⅱ)——昆虫对杀虫剂的抗性研究[J]. 应用昆虫学报, 2020, 57(5): 995–1008.
[7] 桑松, 王政, 齐江卫, 舒本水, 钟国华. 斜纹夜蛾抗药性研究进展[J]. 环境昆虫学报, 2013, 35(6): 808–814.
[8] Sang S, Shu B, Yi X, Liu J, Hu M, Zhong G. Cross-resistance and baseline susceptibility of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) to cyantraniliprole in the south of China [J]. Pest Manage Science, 2016, 72(5): 922–928.
[9] Hunter D M, Milner R J, Spurgin P A. Aerial treatment of the Australian plague locust, Chortoicetes terminifera (Orthoptera: Acrididae) with Metarhizium anisopliae (Deuteromycotina: Hyphomycetes)[J]. Bulletin of Entomological Research, 2001, 91(2): 93–99.
[10] Nem?ovi? M, ?alamon M, Hyblerova S, Mazáň M, Salamon I. Entomopathogenic fungus species Beauveria bassiana (bals.) and Metarhizium anisopliae (metsch.) used as mycoinsecticide effective in biological control of Ips typographus (L.) [J]. Journal of Microbiology, Biotechnology and Food Sciences, 2013, 2: 2469.
[11] Mweke A, Akutse K S, Ulrichs C, Fiaboe K K M, Maniania N K, Ekesi S. Efficacy of aqueous and oil formulations of a specific Metarhizium anisopliae isolate against Aphis craccivora Koch, 1854 (Hemiptera: Aphididae) under field conditions[J]. Journal of Applied Entomology, 2019, 143(10): 1182–1192.
[12] 李红梅, 刘路路, 李天娇, 程雨蒙, 张爱环, 万敏, 张峰. 灰翅夜蛾属重大害虫及其生物防治研究进展[J]. 中国植保导刊, 2021, 41(5): 23–33.
[13] 郑亚强, 胡惠芬, 付玉飞, 金新华, 张栩, 杨宝云, 张志红, 黄明亮, 李永川, 陈斌, 李正跃. 草地贪夜蛾莱氏绿僵菌的分离鉴定[J]. 植物保护, 2019, 45(5): 65–70.
[14] Roy H E, Pell J K. Interactions between entomopathogenic fungi and other natural enemies: Implications for biological control [J]. Biocontrol Science and Technology, 2000, 10(6): 737–752.
[15] 严森, 任小云, 王登杰, 张烨, 张治科, 郭继元, 王海鸿, 雷仲仁, 吴圣勇. 昆虫病原真菌在害虫防治中对天敌生物的影响研究进展[J]. 中国生物防治学报, 2022(1): 1–13.
[16] Wang X, Xu J, Wang X, Qiu B, Cuthbertson A G S, Du C, Wu J, Ali S. Isaria fumosorosea-based zero-valent iron nanoparticles affect the growth and survival of sweet potato whitefly, Bemisia tabaci (Gennadius)[J]. Pest Manag Sci, 2019, 75(8): 2174–2181.
[17] Ali S, Zhang C, Wang Z, Wang X M, Wu J H, Cuthbertson A G S, Shao Z, Qiu B L. Toxicological and biochemical basis of synergism between the entomopathogenic fungus Lecanicillium muscarium and the insecticide matrine against Bemisia tabaci (Gennadius)[J]. Science Report, 2017, 7: 46558.
[18] Terry L A, Joyce D C. Elicitors of induced disease resistance in postharvest horticultural crops: a brief review [J]. Postharvest Biology and Technology, 2004, 32(1): 1–13.
[19] 张航, 崔阳, 董晓宇, 冯树丹, 徐文静. 球孢白僵菌孢子的耐逆性研究[J]. 哈尔滨师范大学自然科学学报, 2014, 30(5): 104–107.
[20] 陈自宏, 陈凯, 谢琪敏. 高黎贡山几株绿僵菌菌株的耐逆性测定[J]. 保山学院学报, 2021, 40(5): 1–4.
[21] Lavine M D, Strand M R. Insect hemocytes and their role in immunity [J]. Insect Biochemistry and Molecular Biology, 2002, 32(10): 1295–1309.
[22] Pech L L, Strand M R. Granular cells are required for encapsulation of foreign targets by insect haemocytes [J]. Journal of Cell Science, 1996, 109(8):2053–2060.
[23] Kavanagh K, Reeves E P. Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens [J]. FEMS Microbiology Reviews, 2004, 28(1): 101–112.
[24] Ling E, Yu X Q. Hemocytes from the tobacco hornworm Manduca sexta have distinct functions in phagocytosis of foreign particles and self dead cells [J]. Developmental and Comparative Immunology, 2006, 30(3): 301–309.
[25] 钟伟, 殷幼平. 美洲大蠊血细胞对金龟子绿僵菌CQMa102菌株的免疫反应[J]. 重庆大学学报(自然科学版), 2003(6): 89–92,100.
[26] Ratcliffe N A. Invertebrate immunity — A primer for the non-specialist [J]. Immunology Letters, 1985, 10(5): 253–270.
[27] Kurata S, Ariki S, Kawabata S. Recognition of pathogens and activation of immune responses in Drosophila and horseshoe crab innate immunity [J]. Immunobiology, 2006, 211(4): 237–249.
[28] Feder M E, Hofmann G E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology [J]. Annual Review Of Physiology, 1999, 61: 243–282.
[29] Guo S H, Yu L, Liu Y M, Wang F F, Chen Y C, Wang Y, Qiu B L, Sang W. Digital gene expression profiling in larvae of Tribolium castaneum at different periods post UV-B exposure [J]. Ecotoxicology and Environmental Safety, 2019, 174: 514–523.
[30] Yang C L, Meng J Y, Yao M S, Zhang C Y. Transcriptome analysis of Myzus persicae to UV-B stress [J]. Journal of Insect Science, 2021, 21(3): 7.
[31] David W A L, Ellaby S, Taylor G. Rearing spodoptera exempta on semi-synthetic diets and on growing maize [J]. Entomologia Experimentalis et Applicata, 1975, 18(2): 226–237.
[32] Ali S, Huang Z, Ren S. Media composition influences on growth, enzyme activity, and virulence of the entomopathogen hyphomycete Isaria fumosoroseus [J]. Entomologia Experimentalis et Applicata, 2009, 131(1): 30–38.
[33] Wu J, Yu X, Wang X, Tang L, Ali S. Matrine enhances the pathogenicity of Beauveria brongniartii against Spodoptera litura (Lepidoptera: Noctuidae)[J]. Front Microbiology, 2019, 10: 1812.
[34] Richards E H, Dani M P, Bradish H. Immunosuppressive properties of a protein (rVPr1) from the venom of the endoparasitic wasp, Pimpla hypochondriaca: Mechanism of action and potential use for improving biological control strategies [J]. Journal of Insect Physiology, 2013, 59(2): 213–222.
[35] Bao Y Y, Lv Z Y, Liu Z B, Xue J, Xu Y P, Zhang C X. Comparative analysis of Bombyx mori nucleopolyhedrovirus responsive genes in fat body and haemocyte of B. mori resistant and susceptible strains [J]. Insect Molecular Biology, 2010, 19(3): 347–358.
[36] Falvo M L, Pereira-Junior R A, Rodrigues J, López Lastra C C, García J J, Fernandes é K K, Luz C. UV-B radiation reduces in vitro germination of Metarhizium anisopliae s.l. but does not affect virulence in fungus-treated Aedes aegypti adults and development on dead mosquitoes [J]. Journal of Applied Microbiology, 2016, 121(6): 1710–1717.
[37] Braga G U L, Rangel D E N, Fernandes é K K, Flint S D, Roberts D W. Molecular and physiological effects of environmental UV radiation on fungal conidia [J]. Current Genetics, 2015, 61(3): 405–425.
[38] Fernández-Bravo M, Flores-León A, Calero-López S, Gutiérrez-Sánchez F, Valverde-García P, Quesada-Moraga E. UV-B radiation-related effects on conidial inactivation and virulence against Ceratitis capitata (Wiedemann) (Diptera; Tephritidae) of phylloplane and soil Metarhizium sp. strains [J]. Journal of Invertebrate Pathology, 2017, 148:142–151.
[39] Nascimento é, da Silva S H, Marques Edos R, Roberts D W, Braga G U. Quantification of cyclobutane pyrimidine dimers induced by UVB radiation in conidia of the fungi Aspergillus fumigatus, Aspergillus nidulans, Metarhizium acridum and Metarhizium robertsii [J]. Photochemistry and Photobiology, 2010, 86(6): 1259–1266.
[40] Fernandes é K, Rangel D E, Braga G U, Roberts D W. Tolerance of entomopathogenic fungi to ultraviolet radiation: a review on screening of strains and their formulation [J]. Current Genetics, 2015, 61(3): 427–440.
[41] Rangel D, Fernandes E, Braga G, Roberts D. Visible light during mycelial growth and conidiation of Metarhizium robertsii produces conidia with increased stress tolerance [J]. FEMS Microbiology Letters, 2011, 315: 81–86.
[42] Gao P, Jin K, Xia Y. The phosphatase gene MaCdc14 negatively regulates UV-B tolerance by mediating the transcription of melanin synthesis-related genes and contributes to conidiation in Metarhizium acridum [J]. Current Genetics, 2020, 66(1): 141–153.
[43] Ortiz-Urquiza A, Keyhani N O. Action on the surface: Entomopathogenic fungi versus the insect cuticle [J]. Insects, 2013, 4(3): 357–374.
[44] Richards E H, Dani M P, Lu Y, Butt T, Weaver R J. Effect of stress on heat shock protein levels, immune response and survival to fungal infection of Mamestra brassicae larvae [J]. Journal of Insect Physiology, 2017, 96: 53–63.
[45] Mowlds P, Kavanagh K. Effect of pre-incubation temperature on susceptibility of Galleria mellonella larvae to infection by Candida albicans [J]. Mycopathologia, 2008, 165(1): 5–12.
[46] Browne N, Surlis C, Kavanagh K. Thermal and physical stresses induce a short-term immune priming effect in Galleria mellonella larvae [J]. Journal of Insect Physiology, 2014, 63:21–26.
[47] Mowlds P, Barron A, Kavanagh K. Physical stress primes the immune response of Galleria mellonella larvae to infection by Candida albicans [J]. Microbes and Infection, 2008, 10(6): 628–634.
[48] Stokes B A, Yadav S, Shokal U, Smith L C, Eleftherianos I. Bacterial and fungal pattern recognition receptors in homologous innate signaling pathways of insects and mammals [J]. Front Microbiology, 2015, 6: 19.
[49] Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster [J]. Annual Review of Immunology, 2007, 25: 697–743.
|