[1] Zidenga T, Leyva–Guerrero E, Moon H, Siritunga D, Sayre R. Extending cassava root shelf life via reduction of reactive oxygen species production [J]. Plant Physiology, 2012, 159(4): 1396–1407.
[2] Dai D, Hu Z, Pu G, Li H, Wang C. Energy efficiency and potentials of cassava fuel ethanol in Guangxi region of China [J]. Energy Conversion and Management, 2006, 47(13): 1686–1699.
[3] Cock J H, Connor D J. Cassava [M]. Elsevier: Crop Physiology Case Histories for Major Crops, 2021: 588–633.
[4] 赵大伟, 宋记明, 刘炜林, 孟凡来, 邓国军, 黄兴粉. 不同生态环境木薯高产高效栽培分析[J]. 中国农学通报, 2021, 37(28): 14–19.
[5] 肖明昆, 刘光华, 宋记明, 刘倩, 段春芳, 姜太玲, 张林辉, 严炜, 沈绍斌, 周迎春, 熊贤坤, 罗鑫, 白丽娜, 李月仙. 不同木薯品种(系)农艺性状分析及高产品种(系)筛选[J]. 作物杂志, 2022(4): 77–82.
[6] 靳亚忠, 任金立, 齐娟, 兰慧, 李宗佑, 吴兴彪, 张天一, 王雪娇, 于佳, 何化强, 张鹏. 薄皮甜瓜品系糖、酸、淀粉含量差异性研究 [J]. 四川农业大学学报, 2020, 38(6): 723–733.
[7] 孙继, 顾万荣, 赵东旭, 孟繁美, 魏湜. 不同株型玉米灌浆期穗位叶可溶性糖含量和子粒淀粉积累关系的研究[J]. 作物杂志, 2012(2): 80–83.
[8] 张秋英, 刘娜, 金剑, 刘晓冰, 杨恕平, 王光华. 春小麦籽粒淀粉和蛋白质积累与底物供应的关系[J]. 麦类作物学报, 2000(1): 55–58.
[9] 沈淞海, 沈海铭, 吴建华. 甘薯生长发育过程中可溶性糖含量与淀粉积累的关系[J]. 浙江农业大学学报(农业与生命科学版), 1994(4): 400–404.
[10] Li M, Yang S, Xu W, Pu Z, Feng J, Wang Z, Zhang C, Peng M, Du C, Lin F, Wei C, Qiao S, Zou H, Zhang L, Li Y, Yang H, Liao A, Song W, Zhang Z, Li J, Wang K, Zhang Y, Lin H, Zhang J, Tan W. The wild sweet potato (Ipomoea trifida) genome provides insights into storage root development [J]. BMC Plant Biology, 2019, 19: 1–17.
[11] Mehdi R, Lamm C E, Anjanappa R B, Mudsam C, Saeed M, Klima J, Kraner M E, Ludewig F, Knoblauch M, Gruissem W, Sonnewald U, Zierer W. Symplasmic phloem unloading and radial post-phloem transport via vascular rays in tuberous roots of Manihot esculenta [J]. Journal of Experimental Botany, 2019, 70(20): 5559–5573.
[12] Pan K, Lu C, Nie P, Hu M Z, Zhou X C, Chen X, Wang W Q. Predominantly symplastic phloem unloading of photosynthates maintains efficient starch accumulation in the cassava storage roots (Manihot esculenta Crantz) [J]. BMC Plant Biology, 2021, 21(1): 318.
[13] 罗兴录, 潘晓璐, 朱艳梅. 木薯内源ABA含量与块根淀粉积累关系研究[J]. 热带作物学报, 2018, 39(3): 472–479.
[14] 彭佳铭, 屈仁军, 王世威, 王新新, 查良平, 彭华胜, 申业. 丹参超氧化物歧化酶SmMSD2基因的克隆与表达分析[J]. 药学学报, 2023, 58(2): 454–464.
[15] 田国忠, 李怀方, 裘维蕃. 植物过氧化物酶研究进展[J]. 武汉植物学研究, 2001(4): 332–344.
[16] 欧阳翠. 高低淀粉木薯品种块根可溶性糖含量与块根淀粉积累研究[J]. 农业科技通讯, 2018(1): 78–82.
[17] Cheng Y E, Dong M Y, Fan X W, Nong L L, Li Y Z. A study on cassava tolerance to and growth responses under salt stress [J]. Environmental and Experimental Botany, 2018, 155: 429–440.
[18] Hosseini S A, Maillard A, Hajirezaei M R, Ali N, Schwarzenberg A, Jamois F, Yvin J C. Induction of barley silicon transporter HvLsi1 and HvLsi2, increased silicon concentration in the shoot and regulated starch and ABA homeostasis under osmotic stress and concomitant potassium deficiency [J]. Frontiers in Plant Science, 2017, 8: 1359–1373.
[19] 刘玉明, 钱甜甜, 蒋定文, 何颖, 沈先荣, 江叔奇. 凯氏定氮法和考马斯亮蓝法测定方格星虫多糖中蛋白质的含量[J]. 中国实验方剂学杂志, 2013, 19(19): 96–98.
[20] 张秀梅, 杜丽清, 谢江辉, 陈佳瑛, 弓德强, 李伟才. 高效液相色谱法测定菠萝果实中的糖分[J]. 食品科学, 2007(11): 450–452.
[21] Velikova V, Yoranov I, Edreva A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants-Protective role of exogenous polyamines [J]. Plant Science, 2000, 151(1): 59–66.
[22] Sinnhuber R O, Yu T C, Chang Y T. Characterization of the red pigment formed in the 2-thiobarbituric acid determination of oxidative rancicity a,b [J]. Journal of Food Science, 2010, 23(6): 626–634.
[23] 秦延河, 罗丹明. B-Mn2+-H2O2体系光度法测定水果的抗氧化性[J]. 江西师范大学学报(自然科学版), 2005(6): 519–521.
[24] 王爱国, 罗广华. 植物的超氧物自由基与羟胺反应的定量关系[J]. 植物生理学通讯, 1990(6): 55–57.
[25] 李合升. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
[26] Lin C C, Kao C H. NaCl induced changes in ionically bound peroxidase activity in roots of rice seedlings [J]. Plant and Soil, 1999, 216(1–2): 147–153.
[27] Misako K, Seki Shimiz. Chlorophyll metabolism in higher plants VI. Involvement of peroxidase in chlorophyll degradation [J]. Plant Cell Physiology, 1985, 26(7):?1291–1301.
[28] Kumar R, Mukherjee S, Ayele B T. Molecular aspects of sucrose transport and its metabolism to starch during seed development in wheat: A comprehensive review [J]. Biotechnology Advances, 2018, 36(4): 954–967.
[29] Fu Y Y, Gu Q Q, Dong Q, Zhang Z H, Lin C, Hu W M, Pan R H, Guan Y J, Hu J. Spermidine enhances heat tolerance of rice seeds by modulating endogenous starch and polyamine metabolism [J]. Molecules, 2019, 24(7): 1395.
[30] Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling [J]. Journal of Experimental Botany, 2014, 65(5): 1229–1240.
[31] Inzé A, Vanderauwera S, Hoeberichts F A, Vandorpe M, Van Gaever T, Van Breusegem F. A subcellular localization compendium of hydrogen peroxide-induced proteins [J]. Plant Cell and Environment, 2012, 35(2): 308–320.
[32] Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti V B, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F. ROS signaling: the new wave? [J]. Trends in Plant Science, 2011, 16(6): 300–309.
[33] Ortega-Galisteo A P, Rodriguez-Serrano M, Pazmino D M, Gupta D K, Sandalio L M, Romero-Puertas M C. S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress [J]. Journal of Experimental Botany, 2012, 63(5): 2089–2103.
[34] Eliyahu E, Rog I, Inbal D, Danon A. ACHT4-driven oxidation of APS1 attenuates starch synthesis under low light intensity in Arabidopsis plants [J]. Proceedings of the national academy of sciences of The United States of America, 2015, 112(41): 12876–12881.
[35] Del Rio L A. ROS and RNS in plant physiology: an overview [J]. Journal of Experimental Botany, 2015, 66(10): 2827–2837.
[36] Xu N, Chu Y L, Chen H L, Li X X, Wu Q, Jin L, Wang G X, Huang J L. Rice transcription factor OsMADS25 modulates root growth and confers salinity tolerance via the ABA-mediated regulatory pathway and ROS scavenging [J]. Plos Genetics, 2018, 14(10): e1007662.
[37] Zhang D, Zhang M, Zhou Y, Wang Y, Shen J, Chen H, Zhang L, Lu B, Liang G, Liang J. The rice G protein γ subunit DEP1/qPE9–1 positively regulates grain-filling process by increasing auxin and cytokinin content in rice grains [J]. Rice, 2019, 12(1): 91.
[38] Rubio S, Noriega X, Perez F J. ABA promotes starch synthesis and storage metabolism in dormant grapevine buds [J]. Journal of Plant Physiology, 2019, 234: 1–8.
|