[1] Fang X F, Tan W, Gao X Y, Chai Z Z. Close-to-nature management positively improves the spatial structure of Masson pine forest stands [J]. Web Ecology, 2021, 21(1): 45–54.
[2] Forrester D I. The spatial and temporal dynamics of species interactions in mixed-species forests: From pattern to process [J]. Forest Ecology and Management, 2014, 312: 282–292.
[3] Pretzsch H, Forrester D I, Bauhus J. Stand dynamics of mixed- species stands compared with monocultures [J]. Mixed-Species Forests, 2017: 117–209. Doi:10.1007/978-3-662-54553-9_4.
[4] Riofrío J, Río M D, Pretzsch H, Bravo F. Changes in structural heterogeneity and stand productivity by mixing scots pine and maritime pine [J]. Forest Ecology and Management, 2017, 405: 219–228.
[5] 吴玉莲, 王襄平, 李巧燕, 孙阎. 长白山阔叶红松林净初级生产力对气候变化的响应:基于BIOME-BGC模型的分析[J]. 北京大学学报(自然科学版), 2014, 50(3): 577–586.
[6] Quesada C A, Phillips O L, Schwarz M, Czimczik C I, Baker T R, Pati?o S, Fyllas N M, Hodnett M G, Herrera R, Almeida S, Alvarez Dávila E, Arneth A, Arroyo L, Chao K J, Dezzeo N, Erwin T, di Fiore A, Higuchi N, Honorio Coronado E, Jimenez E M, Killeen T, Lezama A T, Lloyd G, López-González G, Luiz?o F J, Malhi Y, Monteagudo A, Neill D A, Nú?ez Vargas P, Paiva R, Peacock J, Pe?uela M C, Pe?a Cruz A, Pitman N, Priante Filho N, Prieto A, Ramírez H, Rudas A, Salom?o R, Santos A J B, Schmerler J, Silva N, Silveira M, Vásquez R, Vieira I, Terborgh J, Lloyd J. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate [J]. Biogeosciences, 2012, 9(6): 2203–2246.
[7] Baribault T W, Kobe R K, Rothstei D V. Soil calcium, nitrogen, and water are correlated with aboveground net primary production in northern hardwood forests [J]. Forest Ecology and Management, 2010, 260(5): 723–733.
[8] Sun M M, Zhai B C, Chen Q W, Li G Q, Tateno R, Yamanaka N, Du S. Effects of soil nutrients and stand structure on aboveground net primary productivity of oak secondary forests in the forest-steppe transition zone of Loess Plateau, China [J]. Canadian Journal of Forest Research, 2021, 51(9): 1208–1217.
[9] Homeier J, Leuschner C. Factors controlling the productivity of tropical Andean forests: Climate and soil are more important than tree diversity [J]. Biogeosciences, 2021, 18: 1525–1541.
[10] 李惠萍, 郑子龙, 刘小林, 马建伟, 杨海裕. 小陇山林区3种林分类型对土壤理化性质的影响[J]. 甘肃农业大学学报, 2021, 56(2): 121–128,140.
[11] 李慧, 王百田, 曹远博, 刘青青, 李德宁. 吕梁山区3种人工林植被、凋落物生物量差异特征及其与土壤养分的关系[J]. 植物研究, 2016, 36(4): 573–580.
[12] 中国科学院南京土壤研究所物理研究室. 土壤物理性质测定法[M]. 北京: 科学出版社, 1978: 25–26.
[13] 丁乐, 杨弋, 倪辉, 孙维红, 王一帆, 邹双全. 生物炭配施对芳樟精油产量及品质的影响[J]. 中南林业科技大学学报, 2022, 42(5): 91–100.
[14] Feng Y H, Schmid B, Loreau M, Forrester D I, Fei S L, Zhu J X, Tang Z Y, Zhu J L, Hong P B, Ji C J, Shi Y, Su H J, Xiong X Y, Xiao J, Wang S P, Fang J Y. Multispecies forest plantations outyield monocultures across a broad range of conditions [J]. Science, 2022, 376: 865–868.
[15] 刘晓瞳, 戴兴安, 胡婷, 陈晓波, 张庆费. 基于1公顷样地的上海崇明岛人工林草本植物多样性及其对林冠结构的响应[J]. 生态学杂志, 2017, 36(6): 1564–1569.
[16] 王依瑞, 王彦辉, 段文标, 李平平, 于澎涛, 甄理, 李志鑫, 尚会军. 黄土高原刺槐人工林郁闭度对林下植物多样性特征的影响[J]. 应用生态学报, 2023, 34(2): 305–314.
[17] 吴梦瑶, 陈林, 庞丹波, 刘波, 刘丽贞, 邱开阳, 李学斌. 贺兰山不同海拔土壤团聚体碳氮磷含量及其化学计量特征变化[J]. 应用生态学报, 2021, 32(4): 1241–1249.
[18] 张发会, 吴雪仙, 蔡小虎, 王琛. 川西亚高山3种不同林分类型对土壤理化性质的影响[J]. 四川林业科技, 2015, 36(3): 8–12.
[19] 景贯阳, 邸利, 王安民, 史再军, 牟极, 吴贤忠. 甘肃泾川不同林龄人工刺槐林的土壤水分-物理特性及渗透性研究[J]. 四川农业大学报, 2017, 35(2): 193–198.
[20] 颜鹏, 韩文炎, 李鑫, 张丽平, 张兰. 中国茶园土壤酸化现状与分析[J]. 中国农业科学, 2020, 53(4): 795–813.
[21] 路嘉丽, 沈光, 王琼, 任蔓莉, 裴忠雪, 魏晨辉, 王文杰. 树种差异对哈尔滨市土壤理化性质影响及造林启示[J]. 植物研究, 2016, 36(4): 549–555.
|