亚热带植物科学 ›› 2025, Vol. 54 ›› Issue (3): 318-329.DOI: 10.3969/j.issn.1009-7791.2025.03.010
• 研究论文 • 上一篇
刘 欣1,3,曹 敏1,张文富1,3,吉 馗4,张亚洲2*,杨 洁1*
收稿日期:
2024-12-27
接受日期:
2025-01-14
发布日期:
2025-09-08
通讯作者:
杨 洁
基金资助:
LIU Xin1,3, CAO Min1, ZHANG Wen-fu1,3, JI Kui4, ZHANG Ya-zhou2*, YANG Jie1*
Received:
2024-12-27
Accepted:
2025-01-14
Published:
2025-09-08
Contact:
YANG Jie
摘要: 以热带、亚热带和亚高山三个气候带的海拔梯度样地为研究平台,分析样地树种吸收根(1~3级根)的形态性状、化学计量性状和防御性状的α多样性格局及其驱动因素。结果表明,整体上吸收根功能性状α多样性最高的区域是热带地区。在营养条件更好和养分浓度更高的低海拔地区,群落树种吸收根的功能多样性明显更高。然而,在群落零模型分析结果中,三类吸收根功能性状α多样性基本一致,即在所有气候区域内,吸收根功能性状α多样性的标准化效应量(S.E.S.)均比预期值更低或者没有显著偏差。此外,三类吸收根功能性状均与年平均温度呈正效应,表明气候因子是山地树种吸收根功能性状多样性变异的主要驱动因素。
中图分类号:
刘 欣,曹 敏,张文富,吉 馗,张亚洲,杨 洁. 山地森林群落树种吸收根功能性状多样性格局研究[J]. 亚热带植物科学, 2025, 54(3): 318-329.
LIU Xin, CAO Min, ZHANG Wen-fu, JI Kui, ZHANG Ya-zhou, YANG Jie. Diversity Pattern of Functional Traits of Tree Species Absorptive Roots in Montane Forest Communities[J]. Subtropical Plant Science, 2025, 54(3): 318-329.
[1] Moir W H, Bachelard E P. Distribution of fine roots in three Pinus radiata plantations near canberra, Australia [J]. Ecology, 1969, 50(4): 658–662. [2] Vogt K A, Grier C C, Vogt D J. Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests advances in ecological research [J]. Advances in Ecological Research, 1986, 15: 303–377. [3] Jackson R B, Mooney H A, Schulze E D. A global budget for fine root biomass, surface area, and nutrient?contents [J]. Proceedings of the National Academy of Sciences, 1997, 94(14): 7362–7366. [4] Strand A E, Pritchard S G, McCormack M L, Davis M A, Oren R. Irreconcilable differences: fine-root life spans and soil carbon persistence [J]. Science, 2008, 319(5862): 456–458. [5] Wang Z Q, Guo D L, Wang X R, Gu J C, Mei L. Fine root architecture, morphology, and biomass of different branch orders of two Chinese temperate tree species [J]. Plant and Soil, 2006, 288(1–2): 155–171. [6] McCormack M L, Dickie I A, Eissenstat D M, Fahey T J, Fernandez C W, Guo D L, Helmisaari H S, Hobbie E A, Iversen C M, Jackson R B, Leppalammi-Kujansuu J, Norby R J, Phillips R P, Pregitzer K S, Pritchard S G, Rewald B, Zadworny M. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes [J]. New Phytologist, 2015, 207(3): 505–518. [7] Laliberte E. Below-ground frontiers in trait-based plant ecology [J]. New Phytologist, 2017, 213(4): 1597–1603. [8] Erktan A, Roumet C, Bouchet D, Stokes A, Pailler F, Munoz F. Two dimensions define the variation of fine root traits across plant communities under the joint influence of ecological succession and annual mowing [J]. Journal of Ecology, 2018, 106(5): 2031–2042. [9] Liu G F, Freschet G T, Pan X, Cornelissen J H C, Li Y, Dong M. Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems [J]. New Phytologist, 2010, 188(2): 543–553. [10] Chen W L, Zeng H, Eissenstat D M, Guo D L. Variation of first-order root traits across climatic gradients and evolutionary trends in geological time [J]. Global Ecology and Biogeography, 2013, 22(7): 846–856. [11] Pregitzer K S, DeForest J L, Burton A J, Allen M F, Ruess R W, Hendrick R L. Fine root architecture of nine north American trees [J]. Ecological Monographs, 2002, 72(2): 293–309. [12] Hodge A. The plastic plant: root responses to heterogeneous supplies of nutrients [J]. New Phytologist, 2004, 162(1): 9–24. [13] Zhang W, Liu W C, Xu M P, Deng J, Han X H, Yang G H, Feng Y Z, Ren G X. Response of forest growth to C:N:P stoichiometry in plants and soils during Robinia pseudoacacia afforestation on the Loess Plateau, China [J]. Geoderma, 2019, 337: 280–289. [14] Dai J, Mumper R J. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties [J]. Molecules, 2010, 15(10): 7313–7352. [15] Tharayil N, Suseela V, Triebwasser D J, Preston C M, Gerard P D, Dukes J S. Changes in the structural composition and reactivity of Acer rubrum leaf litter tannins exposed to warming and altered precipitation: climatic stress-induced tannins are more reactive [J]. New Phytologist, 2011, 191(1): 132–145. [16] Girardin C A J, Arag?o L E O C, Malhi Y, Huaraca Huasco, W, Metcalfe D B, Durand L, Mamani M, Silva-Espejo J E, Whittaker R J. Fine root dynamics along an elevational gradient in tropical Amazonian and Andean forests [J]. Global Biogeochemical Cycles, 2013, 27(1): 252–264. [17] Addo-Danso S D, Defrenne C E, McCormack M L, Ostonen I, Addo-Danso A, Foli E G, Borden K A, Isaac M E, Prescott C E. Fine-root morphological trait variation in tropical forest ecosystems: an evidence synthesis [J]. Plant Ecology, 2020, 221(10): 1–13. [18] Zhao N, Yu G R, He N P, Xia F C, Wang Q F, Wang R L, Xu Z W, Jia Y L. Invariant allometric scaling of nitrogen and phosphorus in leaves, stems, and fine roots of woody plants along an altitudinal gradient [J]. Journal of Plant Research, 2016, 129(4): 647–657. [19] Yuan Z Y, Chen H Y H, Reich P B. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus [J]. Nature Communications, 2011, 2(1): 344. [20] Zheng J, Freschet G T, Tedersoo L, Li S, Yan H, Jiang L, Wang H, Ma N, Dai X, Fu X, Kou L. A trait-based root acquisition- defence-decomposition framework in angiosperm tree species [J]. Nature Communications, 2024, 15(1): 5311. [21] Mason N W H, Richardson S J, Peltzer D A, de Bello F, Wardle D A, Allen R B. Changes in coexistence mechanisms along a long-term soil chronosequence revealed by functional trait diversity [J]. Journal of Ecology, 2012, 100(3): 678–689. [22] Ding Y, Zang R, Lu X, Huang J, Xu Y. The effect of environmental filtering on variation in functional diversity along a tropical elevational gradient [J]. Journal of Vegetation Science, 2019, 30(5): 973–983. [23] Sundqvist M K, Sanders N J, Wardle D A. Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change [J]. Annual Review of Ecology, Evolution, and Systematics, 2013, 44(1): 261–280. [24] K?rner C. The use of ‘altitude’ in ecological research [J]. Trends in Ecology & Evolution, 2007, 22(11): 569–574. [25] Holtmeier F K, Broll G. Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales [J]. Global Ecology and Biogeography, 2005, 14(5): 395–410. [26] Sveinbj?rnsson B, Davis J, Abadie W, Butler A. Soil carbon and nitrogen mineralization at different elevations in the Chugach mountains of south-central Alaska, U.S.A [J]. Arctic and Alpine Research, 1995, 27(1): 29–37. [27] Loomis P F, Ruess R W, Sveinbj?rnsson B & Kielland K. Nitrogen cycling at treeline: Latitudinal and elevational patterns across a boreal landscape [J]. écoscience, 2006, 13(4): 544–556. [28] Mayor J R, Sanders N J, Classen A T, Bardgett R D, Clément J -C, Fajardo A, Lavorel S, Sundqvist M K, Bahn M, Chisholm C, Cieraad E, Gedalof Z e, Grigulis K, Kudo G, Oberski D L, Wardle D A. Elevation alters ecosystem properties across temperate treelines globally [J]. Nature, 2017, 542(7639): 91–95. [29] Ma Z Q, Guo D L, Xu X L, Lu M Z, Bardgett R D, Eissenstat D M, McCormack M L, Hedin L O. Evolutionary history resolves global organization of root functional traits [J]. Nature, 2018, 555(7694): 94–97. [30] Schemske D W, Mittelbach G G, Cornell H V, Sobel J M ,Roy K. Is there a latitudinal gradient in the importance of biotic interactions? [J] Annual Review of Ecology, Evolution, and Systematics, 2009, 40: 245–269. [31] Stamp N E. Out of the quagmire of plant defense hypotheses [J]. The Quarterly Review of Biology, 2003, 78(1): 23–55. [32] Baskett C A, Schemske D W. Latitudinal patterns of herbivore pressure in a temperate herb support the biotic interactions hypothesis [J]. Ecology Letters, 2018, 21(4): 578–587. [33] Coley P D, Barone J A. Herbivory and plant defenses in tropical forests [J]. Annual Review of Ecology and Systematics, 1996, 27: 305–335. [34] Galmán A, Abdala-Roberts L, Zhang S, Berny-Mier y Teran J C, Rasmann S, Moreira X. A global analysis of elevational gradients in leaf herbivory and its underlying drivers: Effects of plant growth form, leaf habit and climatic correlates [J]. Journal of Ecology, 2018, 106(1): 413–421. [35] Zhang J, Wang F, Che R X, Wang P, Liu H K, Ji B M, Cui X Y. Precipitation shapes communities of arbuscular mycorrhizal fungi in Tibetan alpine steppe [J]. Scientific Reports, 2016, 6: 23488. [36] D??az S, Cabido M. Vive la difference: plant functional diversity matters to ecosystem processes [J]. Trends in Ecology & Evolution, 2001, 16(11): 646–655. [37] Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson T M. Incorporating plant functional diversity effects in ecosystem service assessments [J]. Proceedings of the National Academy of Sciences, 2007, 104(52): 20684–20689. [38] Pierick K, Link R M, Leuschner C, Homeier J. Elevational trends of tree fine root traits in species-rich tropical Andean forests [J]. Oikos, 2023, 2023(1): e08975. [39] Song X Y, Cao M, Li J Q, Kitching R L, Nakamura A, Laidlaw M J, Tang Y, Sun Z H, Zhang W F, Yang J. Different environmental factors drive tree species diversity along elevation gradients in three climatic zones in Yunnan, southern China [J]. Plant Diversity, 2021, 43(6): 433–443. [40] Ding J X, Kong D L, Zhang Z L, Cai Q, Xiao J, Liu Q, Yin H J. Climate and soil nutrients differentially drive multidimensional fine root traits in ectomycorrhizal-dominated alpine coniferous forests [J]. Journal of Ecology, 2020, 108(6): 2544–2556. [41] Wright I J, Reich P B, Westoby M, Ackerly D D, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen J H C, Diemer M, Flexas J, Garnier E, Groom P K, Gulias J, Hikosaka K, Lamont B B, Lee T, Lee W, Lusk C, Midgley J J, Navas M L, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov V I, Roumet C, Thomas S C, Tjoelker M G, Veneklaas E J, Villar R. The worldwide leaf economics spectrum [J]. Nature, 2004, 428(6985): 821–827. [42] Kula A A R, Hey M H, Couture J J, Townsend P A, Dalgleish H J, Intraspecific competition reduces plant size and quality and damage severity increases defense responses in the herbaceous perennial, Asclepias syriaca [J]. Plant Ecology, 2020, 221(6), 421–430. [43] Delessert C, Wilson I W, Van Der Straeten D, Dennis E S, Dolferus R. Spatial and temporal analysis of the local response to wounding in Arabidopsis leaves [J]. Plant Molecular Biology, 2004, 55(2): 165–181. [44] Moreira X, Mooney K A, Rasmann S, Petry W K, Carrillo-Gavilan A, Zas R, Sampedro L. Trade-offs between constitutive and induced defences drive geographical and climatic clines in pine chemical defences [J]. Ecology Letters, 2014, 17(5): 537–546. [45] Comas L H, Eissenstat D M. Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species [J]. Functional Ecology, 2004, 18(3): 388–397. [46] Freschet G T, Swart E M, Cornelissen J H C. Integrated plant phenotypic responses to contrasting above- and below-ground resources: key roles of specific leaf area and root mass fraction [J]. New Phytologist, 2015, 206(4): 1247–1260. [47] Gill R A, Jackson R B. Global patterns of root turnover for terrestrial ecosystems [J]. New Phytologist, 2000, 147(1): 13–31. [48] 梅莉, 王政权, 程云环, 郭大立. 林木细根寿命及其影响因子研究进展[J]. 植物生态学报, 2004, 28(4): 704–710. [49] McCormack M L, Adams T S, Smithwick E A H, Eissenstat D M. Predicting fine root lifespan from plant functional traits in temperate trees [J]. New Phytologist, 2012, 195(4): 823–831. [50] Laughlin D C, Mommer L, Sabatini F M, Bruelheide H, Kuyper T W, McCormack M L, Bergmann J, Freschet G T, Guerrero-Ramírez N R, Iversen C M, Kattge J, Meier I C, Poorter H, Roumet C, Semchenko M, Sweeney C J, Valverde-Barrantes O J, van der Plas F, van Ruijven J, York L M, Aubin I, Burge O R, Byun C, Custerevska R, Dengler J, Forey E, Guerin G R, Hérault B, Jackson R B, Karger D N, Lenoir J, Lysenko T, Meir P, Niinemets U, Ozinga W A, Pe?uelas J, Reich P B, Schmidt M, Schrodt F, Velázquez E, Weigelt A. Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs [J]. Nature Ecology & Evolution, 2021, 5(8): 1123–1134. [51] Moles A T, Bonser S P, Poore A G B, Wallis I R, Foley W J. Assessing the evidence for latitudinal gradients in plant defence and herbivory [J]. Functional Ecology, 2011, 25(2): 380–388. [52] Rasmann S, Pellissier L, Defossez E, Jactel H, Kunstler G. Climate-driven change in plant-insect interactions along elevation gradients [J]. Functional Ecology, 2014, 28(1): 46–54. [53] Defossez E, Pitteloud C, Descombes P, Glauser G, Allard P M, Walker T W N., Fernandez-Conradi P, Wolfender J L, Pellissier L, Rasmann S. Spatial and evolutionary predictability of phytochemical diversity [J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(3): e2013344118. [54] Moles A T, Perkins S E, Laffan S W, Flores-Moreno H, Awasthy M, Tindall M L, Sack L, Pitman A, Kattge J, Aarssen L W, Anand M, Bahn M, Blonder B, Cavender-Bares J, Cornelissen J H C., Cornwell W K, Díaz S, Dickie J B, Freschet G T, Griffiths J G, Gutierrez A G, Hemmings F A, Hickler T, Hitchcock T D, Keighery M, Kleyer M, Kurokawa H, Leishman M R, Liu K W, Niinemets ü, Onipchenko V, Onoda Y, Penuelas J, Pillar V D, Reich P B, Shiodera S, Siefert A, Sosinski E E, Soudzilovskaia N A, Swaine E K, Swenson N G, van Bodegom P M, Warman L, Weiher E, Wright I J, Zhang H X, Zobel M, Bonser S P. Which is a better predictor of plant traits: temperature or precipitation? [J] Journal of Vegetation Science, 2014, 25(5): 1167–1180. [55] Chapin F S I, Matson P A, Vitousek P M. Principles of Terrestrial Ecosystem Ecology (2nd edn) [M]. NewYork: Springer Nature, 2011. [56] Dobzhansky T. Evolution in the tropics [J]. American Scientist, 1950, 38: 209–221. |
[1] | 熊亲戴, 薛建军, 罗武鸿, 曾球根, 王诗扬, 赖晓超, 邓 军, 康 宁, 凡 强. 广东省种子植物分布新资料(六)[J]. 亚热带植物科学, 2025, 54(2): 209-216. |
[2] | 李孟凯, 张 泽, 许如花, 张 煜, 贾 敏, 罗 艳. 中国蛇舌兰属一新记录种——孟连蛇舌兰[J]. 亚热带植物科学, 2025, 54(2): 217-219. |
[3] | 卢小贵, 谢钦铭. 蟛蜞菊发酵液对铜绿微囊藻的化感作用[J]. 亚热带植物科学, 2025, 54(1): 29-36. |
[4] | 陈 伟, 李楚婷, 傅 强, 刘秀群. 神农架林区国家重点保护野生植物空间分布格局及潜在分布区研究[J]. 亚热带植物科学, 2025, 54(1): 71-81. |
[5] | 郗厚诚, 申健勇, 姜立举, 马兴达, 王文广. 中国西藏种子植物区系新资料[J]. 亚热带植物科学, 2025, 54(1): 82-84. |
[6] | 童毅华, 曾云保. 广东禾本科一新记录属——沼原草属[J]. 亚热带植物科学, 2025, 54(1): 85-88. |
[7] | 张 亮. 广东韶关马坝森林公园土壤重金属污染评价及不同造林模式修复作用[J]. 亚热带植物科学, 2024, 53(6): 560-568. |
[8] | 陈明久. 马尾松侵入杉木及其突脉青冈混交林对林木生长与土壤影响[J]. 亚热带植物科学, 2024, 53(5): 444-450. |
[9] | 付晓莹, 熊 驰. 马关叉柱兰,中国叉柱兰属(兰科)一新记录种[J]. 亚热带植物科学, 2024, 53(5): 471-473. |
[10] | 孙向阳, 沈 浪, 朱 昊, 马海军, 倪味咏, 方宏明, 李晓红, 邵剑文, 刘 坤. 安徽省种子植物1个新变型及3个新记录种[J]. 亚热带植物科学, 2024, 53(5): 474-477. |
[11] | 饶文辉, 王美娜, 陈建兵, 张得宁, 李 健, 孔德敏, 吴欣仪, 张 成, 张胜邦. 青海省兰科植物分布新记录4种[J]. 亚热带植物科学, 2024, 53(4): 373-376. |
[12] | 鲍子禹, 叶 强, 李 薇, 崔诗欣, 羊海军. 中国稠李亚属地理分布特征分析[J]. 亚热带植物科学, 2024, 53(4): 285-296. |
[13] | 宁宏涛, 腾 渝, 王一帆, 陈 烨, 林欣宏, 刘 文, 李守中. 南方红壤侵蚀区不同恢复阶段下马尾松叶经济型谱特征[J]. 亚热带植物科学, 2024, 53(3): 220-226. |
[14] | 康 宁, 张 粤, 陈 羽, 董晶丽, 曾燕娜, 张运玲, 杨诗敏, 梅启明. 广东象头山国家级自然保护区森林碳密度变化[J]. 亚热带植物科学, 2024, 53(3): 227-233. |
[15] | 常梦琳, 陈新艳, 陈世品, 马 良. 中国野生唇形科物种多样性及其地理格局分析[J]. 亚热带植物科学, 2024, 53(3): 234-242. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||