[1] Ziegler A D, Fox J M, Xu J C. The rubber juggernaut[J]. Science, 2009,324(5930): 1024—1025.
[2] 周广胜. 全球生态学[M]. 北京: 气象出版社, 2003: 22—49.
[3] Keenan R J, Reams G A, Achard F, Freitas J V D, Grainger A, Lindquist E. Dynamics of global forest area: Results from the FAO global forest resources assessment 2015[J]. Forest Ecology and Management, 2015,352: 9—20.
[4] Li H M, Ma Y X, Liu W J, Liu W J. Clearance and fragmentation of tropical rain forest in Xishuangbanna, SW, China[J]. Biodiversity and Conservation, 2009,18(13): 3421—3440.
[5] 刘陈立,张军,李阳阳,陈玉龙,杨旭超. 西双版纳橡胶林信息提取和时空格局扩张监测[J]. 福建林业科技, 2017,44(2): 43—50.
[6] Zhu X A, Liu W J, Chen H, Deng Y, Chen C F, Zeng H H. Effects of forest transition on litterfall, standing litter and related nutrient returns: Implications for forest management in tropical China[J]. Geoderma, 2019,333: 123—134.
[7] Fox J M, Castella J C. Expansion of rubber (Hevea brasiliensis) in Mainland Southeast Asia: what are the prospects for smallholders?[J]. The Journal of Peasant Studies, 2013,40(1): 155—170.
[8] Ahrends A, Hollingsworth P M, Ziegler A D, Fox J M, Chen H F, Su Y F, Xu J C. Current trends of rubber plantation expansion may threaten biodiversity and livelihoods[J]. Global Environmental Change, 2015,34: 48—58.
[9] 冯耀宗. 人工群落[M]. 昆明: 云南科技出版社, 2007.
[10] 庞家平,陈明勇,唐建维,郭贤明,曾荣. 橡胶-大叶千斤拔复合生态系统中的植物生长与土壤水分养分动态[J]. 山地学报, 2009,27(4): 433—441.
[11] Wu J E, Liu W J, Chen C F. Can intercropping with the world’s three major beverage plants help improve the water use of rubber trees?[J]. Journal of Applied Ecology, 2016,53(6): 1787—1799.
[12] Wu J E, Liu W J, Chen C F. Below-ground interspecific competition for water in a rubber agroforestry system may enhance water utilization in plants[J]. Scientific Reports, 2016,6: 19502.
[13] Zhu X A, Liu W J, Jiang X J, Wang P Y, Li W X. Effects of land-use changes on runoff and sediment yield: Implications for soil conservation and forest management in Xishuangbanna, Southwest China[J]. Land Degradation & Development, 2018,29(9): 2962—2974.
[14] Jiang X J, Liu W J, Wu J E, Wang P Y, Liu C A, Yuan Z Q. Land degradation controlled and mitigated by rubber-based agroforestry systems through optimizing soil physical conditions and water supply mechanisms: A case study in Xishuangbanna, China[J]. Land Degradation & Development, 2017,28(7): 2277—2289.
[15] Penot E. From shifting agriculture to sustainable complex rubber agroforestry systems (jungle rubber) in Indonesia: a history of innovation processes[M]/Babin D. Beyond Tropical Deforestation. Paris: UNESCO/CIRAD, 2004: 221—249.
[16] Gouyon A, Foresta H D, Levang P. Does ‘jungle rubber’ deserve its name? An analysis of rubber agroforestry systems in southeast Sumatra[J]. Agroforestry Systems, 1993,22(3): 181—206.
[17] Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis[J]. Annual Review of Plant Biology, 1989,40(1): 503—537.
[18] Feng X H. Trends in intrinsic water-use efficiency of natural trees for the past 100-200 years: a response to atmospheric CO2 concentration[J]. Geochimica Et Cosmochimica Acta, 1999,63(13-14): 1891—1903.
[19] 张鑫生,闫飞,王宗玮,李华,金永梅. 13C同位素判别技术在评价植物水分利用效率中的应用[J]. 吉林农业科学, 2009,34(4): 17—20.
[20] 檀文炳,王国安,韩家懋,刘敏,周力平,罗婷,曹子余,程树志. 长白山不同功能群植物碳同位素及其对水分利用效率的指示[J]. 科学通报, 2009,54(13): 1912—1916.
[21] 李机密,黄儒珠,王健,郑怀舟,黄玮. 陆生植物水分利用效率[J]. 生态学杂志, 2009,28(8): 1655—1663.
[22] Wu J E, Liu W J, Chen C F. How do plants share water sources in a rubber-tea agroforestry system during the pronounced dry season?[J]. Agriculture Ecosystems & Environment, 2017,236: 69—77.
[23] 渠春梅,韩兴国,苏波,黄建辉,蒋高明. 云南西双版纳片断化热带雨林植物叶片δ13C值的特点及其对水分利用效率的指示[J]. 植物学报, 2001,43(2): 186—192.
[24] 孔令仑,林捷,黄志群,余再鹏,徐自坤,梁艺凡. 武夷山不同海拔植物水分利用效率的变化及其与养分变化的关系[J]. 应用生态学报, 2017,28(7): 2102—2110.
[25] ?gren G I. The C∶N∶P stoichiometry of autotrophs-theory and observations[J]. Ecology Letters, 2010,7(3): 185—191.
[26] 颉洪涛,虞木奎,成向荣. 光照强度变化对5种耐阴植物氮磷养分含量、分配以及限制状况的影响[J]. 植物生态学报, 2017,41(5): 559—569.
[27] Shangguan Z P, Shao M A, Dyckmans J. Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat[J]. Environmental and Experimental Botany, 2000,44(2): 141—149.
[28] Chen Y H, Han W X, Tang Z Y, Fang J Y. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form[J]. Ecography, 2013,36(2): 178—184.
[29] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(30): 11001.
[30] 张玉凤,蒋菊生. 海南东部垦区部分农场橡胶树叶片营养元素含量分析[J]. 山东林业科技, 2008,38(2): 8—9.
[31] 聂兰琴,吴琴,尧波,付姗,胡启武. 鄱阳湖湿地优势植物叶片-凋落物-土壤碳氮磷化学计量特征[J]. 生态学报, 2016,36(7): 1898—1906.
[32] 周红艳,吴琴,陈明月,匡伟,常玲玲,胡启武. 鄱阳湖沙山单叶蔓荆不同器官碳、氮、磷化学计量特征[J]. 植物生态学报, 2017,41(4): 461—470.
[33] Townsend A R, Cleveland C C, Asner G P, Bustamante M M C. Controls over foliar N∶P ratios in tropical rain forests[J]. Ecology, 2007,88(1): 107—118.
[34] Evans J R. Photosynthesis and nitrogen relationships in leaves of C3 plants[J]. Oecologia, 1989,78(1): 9—19.
[35] Huang Z Q, Liu B, Davis M, Sardans J, Penuelas J, Billings S. Long-term nitrogen deposition linked to reduced water use efficiency in forests with low phosphorus availability[J]. New Phytologist, 2016,210(2): 431—442.
[36] 孔令仑,黄志群,何宗明,郑璐嘉,刘桌明,王民煌. 不同林龄杉木人工林的水分利用效率与叶片养分浓度[J]. 应用生态学报, 2017,28(4): 1069—1076.
|