亚热带植物科学 ›› 2022, Vol. 51 ›› Issue (5): 405-416.DOI: 10.3969/j.issn.1009-7791.2022.05.012
• 文献计量学 • 上一篇
赵永菊,欧阳胜男,铁烈华,崔 雍,段洪浪*
收稿日期:
2022-08-18
接受日期:
2022-09-29
出版日期:
2022-10-15
发布日期:
2023-01-17
通讯作者:
段洪浪
基金资助:
ZHAO Yong-ju, OUYANG Sheng-nan, TIE Lie-hua, CUI Yong, DUAN Hong-lang*
Received:
2022-08-18
Accepted:
2022-09-29
Online:
2022-10-15
Published:
2023-01-17
Contact:
DUAN Hong-lang
摘要: 全球气候变化背景下,越来越多的研究表明未来全球干旱发生的强度和频率还会继续增加,这将进一步制约植物生长,甚至导致植物死亡。很多研究发现养分添加会影响植物对干旱胁迫的响应,但是缺乏文献追踪和可视化研究。因此,本文基于文献计量的方法,利用R语言的Bibliometric包对在Web of Science核心合集中搜集的关于养分添加影响植物干旱胁迫响应的文献进行全面分析。结果表明,在2008~2021年间,关于养分添加影响植物干旱响应的论文数量呈持续增长趋势,特别是2018年以来增长最快。该领域发文数量最多的机构是西北农林科技大学(43篇),而且各机构间有较为紧密的合作关系。研究论文大多发表在农业、林业领域期刊,其中发表论文数量最多的期刊是Agronomy-Basel,H指数最高的是Global Change Biology。出现频率最高的关键词有“drought”“climate change”“fertilization”“nitrogen”“yield”以及“water use efficiency”等。关键词聚类分析表明,在养分添加影响植物干旱响应的一系列研究中,国内外科研人员重点关注植物产量、水分利用效率和植物生理动态过程。基于全球气候变化的背景,预测养分添加影响植物干旱响应的机制将是该领域重要的研究方向。
中图分类号:
赵永菊, 欧阳胜男, 铁烈华, 崔 雍, 段洪浪. 基于文献计量学的养分添加影响植物干旱响应的可视化分析[J]. 亚热带植物科学, 2022, 51(5): 405-416.
ZHAO Yong-ju, OUYANG Sheng-nan, TIE Lie-hua, CUI Yong, DUAN Hong-lang. Visual Analysis of Effects of Nutrients on Plant Drought Responses Based on Bibliometrics[J]. Subtropical Plant Science, 2022, 51(5): 405-416.
[1] Panel on Climate Change. Climate Change 2021: The Physical Science Basis: Contribution of Working Group I to the Sixth Assessment Report of the IPCC[R]. Geneva, IPCC, 2021. [2] Dai A. Increasing drought under global warming in observations and models[J]. Nature Climate Change, 2013, 3(1): 52–58. [3] Hao Z C, Singh V P. Drought characterization from a multivariate perspective: A review[J]. Journal of Hydrology, 2015, 527: 668–678. [4] Sheffield J, Wood E F. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations[J]. Climate Dynamics, 2008, 31(1): 79–105. [5] Martinez-Vilalta J, Anderegg W, Sapes G, Sala A. Greater focus on water pools may improve our ability to understand and anticipate drought–induced mortality in plants[J]. New Phytologist, 2019, 223(1): 22–32. [6] Rice K J, Matzner S L, Byer W. Patterns of tree dieback in Queensland, Australia: the importance of drought stress and the role of resistance to cavitation[J]. Oecologia, 2004, 139: 190–198. [7] Tyree M T, Zimmermann M H. Xylem structure and the ascent of sap[M]. Germany: Springer Science & Business Media, 2013. [8] Cowan I R. Stomatal behaviour and environment[M]. United States: Advances in Botanical Research, 1978: 117–228. [9] Munné-Bosch S, Alegre L. Die and let live: leaf senescence contributes to plant survival under drought stress[J]. Functional Plant Biology, 2004, 31(3): 203–216. [10] Tariq A, Pan K W, Olatunji O A, Graciano C, Li Z L, Sun F, Sun X M, Song D G, Chen W K, Zhang A P, Wu X G, Zhang L, Deng M R, Xiong Q L, Liu C G. Phosphorous application improves drought tolerance of Phoebe zhennan[J]. Frontiers in Plant Science, 2017, 8: 1561. [11] Du Y L, Zhao Q, Chen L R, Yao X D, Zhang W, Zhang B, Xie F T. Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings[J]. Plant Physiology and Biochemistry, 2020, 146: 1–12. [12] Reddy A R, Chaitanya K V, Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants[J]. Journal of Plant Physiology, 2004, 161(11): 1189–1202. [13] Fisher J B, Badgley G, Blyth E. Global nutrient limitation in terrestrial vegetation[J]. Global Biogeochemical Cycles, 2012, 26(3): 1–9. [14] Gessler A, Schaub M, McDowell N G. The role of nutrients in drought-induced tree mortality and recovery[J]. New Phytologist, 2017, 214(2): 513–520. [15] Tarvainen L, N?sholm T. Can adjustments in foliar nitrogen-use efficiency reduce drought stress impacts on boreal trees?[J]. Tree Physiology, 2017, 37(4): 415–417. [16] Xu N, Guo W, Liu J. Increased nitrogen deposition alleviated the adverse effects of drought stress on Quercus variabilis and Quercus mongolica seedlings[J]. Acta Physiologiae Plantarum, 2015, 37(6): 1–11. [17] Zhang H X, Gao Y Z, Tasisa B Y, Baskin J M, Baskin C C, Lu X T, Zhou D W. Divergent responses to water and nitrogen addition of three perennial bunchgrass species from variously degraded typical steppe in Inner Mongolia[J]. Science of the Total Environment, 2019, 647: 1344–1350. [18] Arquero O, Barranco D, Benlloch M. Potassium starvation increases stomatal conductance in olive trees[J]. HortScience, 2006, 41(2): 433–436. [19] Dziedek C, von Oheimb G, Calvo L. Does excess nitrogen supply increase the drought sensitivity of European beech (Fagus sylvatica L.) seedlings?[J]. Plant Ecology, 2016, 217(4): 393–405. [20] Ewers B E, Oren R, Sperry J S. Influence of nutrient versus water supply on hydraulic architecture and water balance in Pinus taeda[J]. Plant, Cell & Environment, 2000, 23(10): 1055–1066. [21] Waring R H. Characteristics of trees predisposed to die[J]. Bioscience, 1987, 37(8): 569–574. [22] Kreuzwieser J, Gessler A. Global climate change and tree nutrition: influence of water availability[J]. Tree Physiology, 2010, 30(9): 1221–1234. [23] Rahman M, Haque T L, Fukui T. Research articles published in clinical radiology journals: Trend of contribution from different countries[J]. Academic Radiology, 2005, 12(7): 825–829. [24] Peng Y L, Lin A W, Wang K, Liu F L, Zeng F, Yang L. Global trends in DEM-related research from 1994 to 2013: a bibliometric analysis[J]. Scientometrics, 2015, 105(1): 347–366. [25] Aria M, Cuccurullo C. Bibliometrix: An R-tool for comprehensive science mapping analysis[J]. Journal of Informetrics, 2017, 11(4): 959–975. [26] Ngcamu B S, Chari F. Drought influences on food insecurity in Africa: A systematic literature review[J]. International Journal of Environmental Research and Public Health, 2020, 17(16): 5897. [27] Intergovernmental Panel on Climate Change. Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of IPCC[R]. Swedn, IPCC, 2013. [28] 于美佳, 叶彦辉, 段少荣, 韩艳英. 基于文献计量学的氮沉降对土壤微生物影响的可视化分析[J]. 安徽农业科学, 2021, 49(9): 230–236. [29] Zhang L X, Gao M, Li S X, Alva A K, Ashraf M. Potassium fertilization mitigates the adverse effects of drought on selected Zea mays cultivars[J]. Turkish Journal of Botany, 2014, 38(4): 713–723. [30] Li Z H, Wang M, Yang Y, Zhao S X, Zhang Y L, Wang X D. Effect of composted manure plus chemical fertilizer application on aridity response and productivity of apple trees on the loess plateau, China[J]. Arid Land Research and Management, 2017, 31(4): 388–403. [31] Wang L L, Wang S W, Chen W, Li H B, Deng X P. Physiological mechanisms contributing to increased water-use efficiency in winter wheat under organic fertilization[J]. PLoS One, 2017, 12(6): 154–164. [32] He Z Q, Zhang T H, Zhao X Y, Liu X P. The physiological-morphological (leaf-level) responses of soybean (Glycine max (L.) Merr.) to three regimes of deficit irrigation and fertilizer coupling in Horqin sandy land, northeastern China[J]. Fresenius Environmental Bulletin, 2018, 27(12B): 9828–9839. [33] Liu H, Song F B, Liu S Q, Liu F L, Zhu X C. Physiological response of maize and soybean to partial root-zone drying irrigation under N fertilization levels[J]. Emirates Journal of Food and Agriculture, 2018, 30(5): 364–371. [34] Fang L D, Zhao Q, Liu Y Y, Hao G Y. The influence of a five–year nitrogen fertilization treatment on hydraulic architecture of Pinus sylvestris var. mongolica in a water-limited plantation of NE China[J]. Forest Ecology and Management, 2018, 418: 15–22. [35] Yu F, Truong T V, He Q, Hua L, Su Y, Li J Y. Dry season irrigation promotes leaf growth in Eucalyptus urophylla × E. grandis under fertilization[J]. Forests, 2019, 10(1): 67. [36] Battie–Laclau P, Delgado-Rojas J S, Christina M, Nouvellon Y, Bouillet J P, Piccolo M D, Moreira M Z, Goncalves J, Roupsard O, Laclau J P. Potassium fertilization increases water-use efficiency for stem biomass production without affecting intrinsic water-use efficiency in Eucalyptus grandis plantations[J]. Forest Ecology and Management, 2016, 364: 77–89. [37] Asensio V, Domec J C, Nouvellon Y, Laclau J P, Bouillet J P, Jordan-Meille L, Lavres J, Rojas J D, Guillemot J, Abreu C H. Potassium fertilization increases hydraulic redistribution and water use efficiency for stemwood production in Eucalyptus grandis plantations[J]. Environmental and Experimental Botany, 2020, 176: 104085. [38] Mateus N D, Florentino A L, Santos E F, Ferraz A D, Goncalves J, Lavres J. Partial substitution of K by Na alleviates drought stress and increases water use efficiency in Eucalyptus species seedlings[J]. Frontiers in Plant Science, 2021, Doi: 10.3389/fpls.2021.632342 . [39] Jordan-Meille L, Martineau E, Bornot Y. How does water-stressed corn respond to potassium nutrition? A shoot-root scale approach study under controlled conditions[J]. Agriculture, 2018, 8(11): 180. [40] Flores R A, Arruda E M, de Souza J P, Prado R D, Dos Santos A, Aragao A S, Pedreira N G, Da Costa C F. Nutrition and production of Helianthus annuus in a function of application of leaf silicon[J]. Journal of Plant Nutrition, 2019, 42(2): 137–144. [41] Galindo F S, Pagliari P H, Rodrigues W L, Fernandes G C, Boleta E, Santini J, Jalal A, Buzetti S, Lavres J, Teixeira M. Silicon amendment enhances agronomic efficiency of nitrogen fertilization in maize and wheat crops under tropical conditions[J]. Plants–Basel, 2021, DOI: 10.3390/plants 10071329. [42] 刘世荣. 提升林草碳汇潜力助力碳达峰碳中和目标[J]. 大众投资指南, 2022(1): 55–56. [43] He Z H, Gong K Y, Zhang Z L, Dong W B, Feng H, Yu Q, He J Q. What is the past, present, and future of scientific research on the Yellow River Basin? –A bibliometric analysis[J]. Agricultural Water Management, 2022, 262: 107404. [44] Kulak M, Ozkan A, Bindak R. A bibliometric analysis of the essential oil–bearing plants exposed to the water stress: How long way we have come and how much further?[J]. Scientia Horticulturae, 2019, 246: 418–436. [45] Zhao Y L, Jiang Y G, Zhou Z F, Yang Z M. Global trends in karst–related studies from 1990 to 2016: A bibliometric analysis[J]. Alexandria Engineering Journal, 2021, 60(2): 2551–2562. [46] Lie Z Y, Penuelas J, Sardans J, Li Y L, Liu S Z, Chu G W, Meng Z, He X H, Liu J X. Warming drives sustained plant phosphorus demand in a humid tropical forest[J]. Global Change Biology, 2022, 28(13): 4085–4096. [47] Penuelas J, Sardans J, Ogaya R, M Estiarte. Nutrient stoichiometric relations and biogeochemical niche in coexisting plant species: effect of simulated climate change[J]. Polish Journal of Ecology, 2008, 56(4): 613–622. [48] Sardans J, Pe?uelas J. Plant–soil interactions in Mediterranean forest and shrublands: impacts of climatic change[J]. Plant and Soil, 2013, 365(1): 1–33. [49] Sardans J, Pe?uelas J. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system[J]. Plant Physiology, 2012, 160(4): 1741–1761. [50] Penuelas J, Ciais P, Canadell J G, Janssens I A, Fernandez-Martinez M, Carnicer J, Obersteiner M, Piao S L, Vautard R, Sardans J. Shifting from a fertilization-dominated to a warming–dominated period[J]. Nature Ecology & Evolution, 2017, 1(10): 1438–1445. [51] Sardans J, Pe?uelas J. Tree growth changes with climate and forest type are associated with relative allocation of nutrients, especially phosphorus, to leaves and wood[J]. Global Ecology and Biogeography, 2013, 22(4): 494–507. [52] Jacobs D F, Davis A S, Dumroese R K, Burney O T. Nursery cultural techniques facilitate restoration of Acacia koa competing with invasive grass in a dry tropical forest[J]. Forests, 2020, 11(11): 1124. [53] 王耕, 常畅, 石永辉. 基于文献计量的自然资本研究现状及热点[J]. 生态学报, 2019, 39(21): 8183–8192. [54] 奉国和, 孔泳欣. 基于时间加权关键词词频分析的学科热点研究[J]. 情报学报, 2020, 39(1): 100–110. [55] Song J Y, Wang Y, Pan Y H, Pang J Y, Zhang X, Fan J F, Zhang Y. The influence of nitrogen availability on anatomical and physiological responses of Populus alba × P. glandulosa to drought stress[J]. BMC Plant Biology, 2019, 19(1): 1–12. [56] Shimshi D. The effect of nitrogen supply on transpiration and stomatal behaviour of beans (Phaseolus vulgaris L.) [J]. New Phytologist, 1970, 69(2): 405–412. [57] Yang Y, Guo J Y, Wang G X, Yang L D, Yang Y. Effects of drought and nitrogen addition on photosynthetic characteristics and resource allocation of Abies fabri seedlings in eastern Tibetan Plateau[J]. New Forests, 2012, 43(4): 505–518. [58] Chen W, Yao X Q, Cai K Z, Chen J N. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption[J]. Biological Trace Element Research, 2011, 142(1): 67–76. [59] Hajiboland R, Cheraghvareh L, Poschenrieder C. Improvement of drought tolerance in Tobacco (Nicotiana rustica L.) plants by silicon[J]. Journal of Plant Nutrition, 2017, 40(12): 1661–1676. [60] Mi Y F, Cui R H. Effect of waterlogging stress on photosynthetic characteristics of different resistance of kiwifruit seedlings[J]. Northern Horticulture, 2015, 2: 14–17. [61] Song Y S, Li J L, Liu M L, Meng Z, Liu K C, Sui N. Nitrogen increases drought tolerance in maize seedlings[J]. Functional Plant Biology, 2019, 46(4): 350–359. [62] Habiba U, Ali S, Farid M, Shakoor M B, Rizwan M, Ibrahim M, Abbasi G H, Hayat T, Ali B. EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L.[J]. Environmental Science and Pollution Research, 2015, 22(2): 1534–1544. [63] Hasanuzzaman M, Bhuyan M, Nahar K, Hossain M S, Al Mahmud J, Hossen M S, Masud A, Moumita, Fujita M. Potassium: A vital regulator of plant responses and tolerance to abiotic Stresses[J]. Agronomy–Basel, 2018, 8(3): 31. [64] Cakmak I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants[J]. Journal of Plant Nutrition and Soil Science, 205, 168(4): 521–530. [65] Brito C, Dinis L T, Ferreira H, Moutinho-Pereira J, Correia C. The role of nighttime water balance on Olea europaea plants subjected to contrasting water regimes[J]. Journal of Plant Physiology, 2018, 226: 56–63. [66] Zafar Z, Rasheed F, Atif R M, Javed M A, Maqsood M, Gailing O. Foliar application of salicylic acid improves water stress tolerance in Conocarpus erectus L. and Populus deltoides L. saplings: evidence from morphological, physiological, and biochemical changes[J]. Plant–Basel, 2021, 10(6): 1242. [67] Saheri F, Barzin G, Pishkar L, Boojar M, Babaeekhou L. Foliar spray of salicylic acid induces physiological and biochemical changes in purslane (Portulaca oleracea L.) under drought stress[J]. Biologia, 2020, 75(12): 2189–2200. [68] Chaves M M, Pereira J S, Maroco J. How plants cope with water stress in the field? Photosynthesis and growth[J]. Annals of Botany, 2002, 89(7): 907–916. [69] Basal O, Szabo A. The combined effect of drought stress and nitrogen fertilization on soybean[J]. Agronomy–Basel, 2020, 10(3): 384. [70] Zamani S, Naderi M R, Soleymani A, Nasiri B M. Sunflower (Helianthus annuus L.) biochemical properties and seed components affected by potassium fertilization under drought conditions[J]. Ecotoxicology and Environmental Safety, 2020, 190: 110017. [71] Alandia G, Jacobsen S E, Kyvsgaard N C, Condori B, Liu F. Nitrogen sustains seed yield of Quinoa under intermediate drought[J]. Journal of Agronomy and Crop Science, 2016, 202(4): 281–291. [72] Van Der Graaf S C, Janssen T A J, Erisman J W. Nitrogen deposition shows no consistent negative nor positive effect on the response of forest productivity to drought across European FLUXNET forest sites[J]. Environmental Research Communications, 2021, 3(12): 125003. [73] Nogueira C, Bugalho M N, Pereira J S, Caldeira M C. Extended autumn drought, but not nitrogen deposition, affects the diversity and productivity of a Mediterranean grassland[J]. Environmental and Experimental Botany, 2017, 138: 99–108. [74] Hughes J, Hepworth C, Dutton C, Dunn J A, Hunt L, Stephens J, Waugh R, Cameron D D, Gray J E. Reducing stomatal density in barley improves drought tolerance without impacting on yield[J]. Plant Physiology, 2017, 174(2): 776–787. [75] Scharwies J D, Dinneny J R. Water transport, perception, and response in plants[J]. Journal of Plant Research, 2019, 132(3): 311–324. |
[1] | 李冰敏, 卓定龙, 谢伟文, 方必君, 刘晓洲, 谭广文. N素指数施肥对野牡丹幼苗生长和光合特性的影响[J]. 亚热带植物科学, 2023, 52(4): 287-292. |
[2] | 曾荔琦, 曾嘉欣, 杨蕾蕾, 杨 洋. 罗汉果伯林2号种子形态结构及萌发特性[J]. 亚热带植物科学, 2023, 52(4): 293-300. |
[3] | 舒彦淇, 罗家骏, 贾傛吏, 段丽丽, 莫泽君, 刘仁祥. 干旱胁迫对烟草两品种幼苗生理生化特性及NtDEGP5基因表达的影响[J]. 亚热带植物科学, 2023, 52(1): 1-8. |
[4] | 李红强,罗 倩,杨 帅,谢瑞莹,聂 琼. 过表达NtMYB4a基因增强烟草抗旱能力[J]. 亚热带植物科学, 2022, 51(1): 13-18. |
[5] | 倪建中,罗 倩,陈小宇,代色平,王 伟. 木棉叶片叶绿素荧光参数和SPAD值对干旱胁迫的响应[J]. 亚热带植物科学, 2021, 50(04): 257-261. |
[6] | 苏石诚,韦小丽,金念情,周紫晶,邵畅畅,田雨风. 施肥对红豆树苗木生长、根系结瘤和矿质营养的影响[J]. 亚热带植物科学, 2021, 50(01): 1-8. |
[7] | 谭 莎,赖路伟,黄永芳,叶小萍,谭健彬,许雄坚. 3个山茶品种对干旱胁迫的生理响应[J]. 亚热带植物科学, 2020, 49(05): 335-339. |
[8] | 潘 婷,陈雪莲,郝焰平,姜春武,王 松,王金山,陈世娟,于孝松,程 峰,韦 蔷,徐六一. 不同浓度复合肥对松材线虫病抗性马尾松采穗圃萌条和穗条扦插的影响[J]. 亚热带植物科学, 2020, 49(03): 215-219. |
[9] | 朱报著,杨会肖,潘 文,徐 斌,杨晓慧,徐 放,张卫华,廖焕琴,王裕霞. 不同施肥处理杜鹃红山茶N、P、K元素的DRIS营养诊断[J]. 亚热带植物科学, 2020, 49(01): 21-26. |
[10] | 卢雅莉,吴杨熙,陈红跃. PEG模拟干旱条件下木麻黄幼苗的生理变化[J]. 亚热带植物科学, 2019, 48(02): 109-113. |
[11] | 赖旭恩,胡德活,苏艳,张亦弛,郑会全. 干旱胁迫对杉木无性系非结构性碳水化合物含量的影响[J]. 亚热带植物科学, 2018, 47(02): 120-123. |
[12] | 蓝来娇,林伟通,明怡,刘玉垠,崔思明,郑明轩,吴永彬. 干旱胁迫及复水对浙江润楠幼苗生长与生理特性的影响[J]. , 2017, 46(03): 219-224. |
[13] | 孙丽静,陈红跃. 不同施肥配比对黎蒴栲幼苗氮含量及其分布格局的影响[J]. , 2017, 46(02): 142-146. |
[14] | 郑芝波,刘远星,庾富文,胡楚维,钟伟斌,罗诗. 不同肥料对盆栽苹果花卡特兰生长及开花的影响[J]. 亚热带植物科学, 2017, 46(01): 88-91. |
[15] | 李中华,刘进平,谷海磊,孟文艳,张燕. 干旱胁迫对植物气孔特性影响研究进展[J]. 亚热带植物科学, 2016, 45(02): 195-200. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||