[1] 孙立影, 于志晶, 李海云, 李俊波, 刘洪章, 林秀峰, 马瑞. 植物次生代谢物研究进展[J]. 吉林农业科学, 2009, 34(4): 4–10.
[2] Barros J, Dixon R A. Plant phenylalanine/tyrosine ammonia-lyases [J]. Trends in Plant Science, 2019, 25(1): 66–79.
[3] Koukol J, Conn E E. The metabolism of aromatic compounds in higher plants. IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgare [J]. The Journal of Biological Chemistry, 1961, 236: 2692–2698.
[4] 尚军, 吴旺泽, 马永贵. 植物苯丙烷代谢途径[J]. 中国生物化学与分子生物学报, 2022, 38(11): 1467–1476.
[5] Hou X M, Shao F J, Ma Y M, Lu S F. The phenylalanine ammonia-lyase gene family in Salvia miltiorrhiza: genome-wide characterization, molecular cloning and expression analysis [J]. Molecular Biology Reports, 2013, 40(7): 4301–4310.
[6] Xu H, Park N I, Li X H, Kim Y Y, Lee S Y, Park S U. Molecular cloning and characterization of phenylalanine ammonia-lyase, cinnamate 4-hydroxylase and genes involved in flavone biosynthesis in Scutellaria baicalensis [J]. Bioresource Technology, 2010, 101(24): 9715–9722.
[7] Zhang Y, Fu X Q, Hao X L, Zhang L D, Wang L Y, Qian H M, Zhao J Y. Molecular cloning and promoter analysis of the specific salicylic acid biosynthetic pathway gene phenylalanine ammonia-lyase (AaPAL1) from Artemisia annua [J]. Biotechnology and Applied Biochemistry, 2016, 63(4): 514–524.
[8] Bhat W W, Razdan S, Rana S, Dhar N, Wani T A, Qazi P, Vishwakarma R, Lattoo S K. A phenylalanine ammonia-lyase ortholog (PkPAL1) from Picrorhiza kurrooa Royle ex. Benth: molecular cloning, promoter analysis and response to biotic and abiotic elicitors [J]. Gene, 2014, 547(2): 245–256.
[9] Lee B K, Park M R, Srinivas B, Chun J C, Kwon I S, Chung I M, Yoo N H, Choi K G, Yun S J. Induction of phenylalanine ammonia-lyase gene expression by paraquat and stress-related hormones in Rehmannia glutinosa [J]. Molecules and Cells, 2003, 16(1): 34–39.
[10] Liu R, Xu S H, Li J L, Hu Y L, Lin Z P. Expression profile of a PAL gene from Astragalus membranaceus var. Mongholicus and its crucial role in flux into flavonoid biosynthesis [J]. Plant Cell Reports, 2006, 25(7): 705–710.
[11] 罗才林, 李林, 陈立, 邓琴, 张俊, 马璇, 徐德林, 钱刚. 白及苯丙氨酸解氨酶基因的克隆、序列特征及激素响应表达分析[J]. 中草药, 2019, 50(3): 694–701.
[12] Xu F, Deng G, Cheng S Y, Zhang W W, Huang X H, Li L L, Cheng H, Rong X F, Li J B. Molecular cloning, characterization and expression of the phenylalanine ammonia-Lyase gene from Juglans regia [J]. Molecules, 2012, 17(7): 7810–7823.
[13] Kumar A, Ellis B E. The phenylalanine ammonia-lyase gene family in raspberry. Structure, expression, and evolution [J]. Plant Physiology, 2001, 127(1): 230–239.
[14] Song J, Wang Z. Molecular cloning, expression and characterization of a phenylalanine ammonia-lyase gene (SmPAL1) from Salvia miltiorrhiza [J]. Molecular Biology Reports, 2009, 36(5): 939–952.
[15] Xu F, Cai R, Cheng S Y, Du H W, Wang Y, Cheng S H. Molecular cloning, characterization and expression of phenylalanine ammonia-lyase gene from Ginkgo biloba [J]. African Journal of Biotechnology, 2008, 7(6): 721–729.
[16] Fan S P, Chen W, Wei J C, Gao X X, Yang Y C, Wang A H, Hu G S, Jia J M. Molecular cloning and characterization of three phenylalanine ammonia-lyase genes from Schisandra chinensis [J]. Chinese Journal of Natural Medicines, 2022, 20(7): 527–536.
[17] Wang B, Sun W, Li Q S, Li Y, Luo H M, Song J Y, Sun C, Qian J, Zhu Y J, Hayward A, Xu H, Chen S L. Genome-wide identification of phenolic acid biosynthetic genes in Salvia miltiorrhiza [J]. Planta, 2015, 241(3): 711–725.
[18] 刘俊频, 李胜立, 袁元, 郑玲辉, 全雪丽, 吴松权. 膜荚黄芪3个苯丙氨酸解氨酶基因的克隆与表达分析[J]. 中草药, 2019, 50(7): 1669–1675.
[19] Ma L Q, Gao D Y, Wang Y N, Wang H H, Zhang J X, Pang X B, Hu T S, Lv S Y, Li G F, Ye H C, Li Y F, Wang H. Effects of overexpression of endogenous phenylalanine ammonia-lyase (PALrs1) on accumulation of salidroside in Rhodiola sachalinensis [J]. Plant Biology, 2008, 10(3): 323–333.
[20] Yazaki K, Kataoka M, Honda G, Severin K, Heide L. cDNA cloning and gene expression of phenylalanine ammonia-lyase in Lithospermum erythrorhizon [J]. Bioscience Biotechnology and Biochemistry, 1997, 61(12): 1995–2003.
[21] Mizukami H, Tabira Y, Ellis B E. Methyl jasmonate-induced rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures [J]. Plant Cell Reports, 1993, 12(12): 706–709.
[22] Qing J, Yao Y, Cai Y P, Lin Y. Molecular cloning and sequence analysis of a phenylalanine ammonia-lyase gene from Dendrobium [J]. PloS ONE, 2013, 8(4): e62352.
[23] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941–1952.
[24] Ma W L, Wu M, WU Y, Ren Z M, Zhong Y. Cloning and characterisation of a phenylalanine ammonia-lyase gene from Rhus chinensis [J]. Plant Cell Reports, 2013, 32(8): 1179–1190.
[25] Jiang Y M, Xia N, Li X D, Shen W B, Liang L J, Wang C Y, Wang R, Peng F, Xia B. Molecular cloning and characterization of a phenylalanine ammonia-lyase gene (LrPAL) from Lycoris radiate [J]. Molecular Biology Reports, 2011, 38(3): 1935–1940.
[26] Li W, Yang Y, Qiao C, Zhang G L, Luo Y G. Functional characterization of phenylalanine ammonia-lyase and cinnamate 4-hydroxylase-encoding genes from Lycoris radiata, a galanthamine-producing plant [J]. International Journal of Biological Macromolecules, 2018, 117: 1264–1279.
[27] 林春草, 陈大伟, 戴均贵. 黄酮类化合物合成生物学研究进展[J]. 药学学报, 2022, 57(5): 1322–1335.
[28] Qin Y, Li Q E, An Q J, Li D X, Huang S P, Zhao Y Y, Chen W J, Zhou J Y, Liao H. A phenylalanine ammonia lyase from Fritillaria unibracteata promotes drought tolerance by regulating lignin biosynthesis and SA signaling pathway [J]. International Journal of Biological Macromolecules, 2022, 213: 574–588.
[29] Yao L, Zhang H Y, Liu Y R, Ji Q S, Xie J, Zhang R, Huang L Q, Mei K R, Wang J, Gao W Y. Engineering of triterpene metabolism and overexpression of the lignin biosynthesis gene PAL promotes ginsenoside Rg3 accumulation in ginseng plant chassis [J]. Journal of Integrative Plant Biology, 2022, 64(9): 1739–1754.
[30] 陈雷, 常丽, 曹福亮, 汪贵斌, 董晓伟. 银杏叶黄酮类化合物含量及相关酶活性对温度和干旱胁迫的响应[J]. 西北植物学报, 2013, 33(4): 755–762.
[31] Xu Z C, Gao R R, Pu X D, Xu R, Wang J Y, Zheng S H, Zeng Y, Chen J, He C N, Song J Y. Comparative genome analysis of Scutellaria baicalensis and Scutellaria barbata reveals the evolution of active flavonoid biosynthesis [J]. Genomics Proteomics Bioinformatics, 2020, 18(3): 230–240.
[32] 张宽朝, 金青, 蔡永萍, 林毅. 苯丙氨酸解氨酶与其在重要次生代谢产物调控中的作用研究进展[J]. 中国农学通报, 2008, 24(12): 59–62.
[33] Xu N T, Liu S, Lu Z G, Pang S Y, Wang L, Wang L, Li W X. Gene expression profiles and flavonoid accumulation during salt stress in Ginkgo biloba seedlings [J]. Plants, 2020, 9(9): 1162.
[34] Takshak S, Agrawal S B. Secondary metabolites and phenylpropanoid pathway enzymes as influenced under supplemental ultraviolet-B radiation in Withania somnifera Dunal, an indigenous medicinal plant [J]. Journal of Photochemistry and Photobiology B: Biology, 2014, 140: 332–343.
[35] 李菊, 李玉梅, 苟亚妮, 张同霞, 朱建龙, 肖雪梅. 酚酸类物质代谢及其化感效应研究进展[J]. 黑龙江农业科学, 2019(8): 175–182.
[36] Yan K, Cui M X, Zhao S J, Chen X B, Tang X L. Salinity stress is beneficial to the accumulation of chlorogenic acids in honeysuckle (Lonicera japonica Thunb.) [J]. Frontiers in Plant Science, 2016, 7: 1563.
[37] Song J, Wang Z. RNAi-mediated suppression of the phenylalanine ammonia-lyase gene in Salvia miltiorrhiza causes abnormal phenotypes and a reduction in rosmarinic acid biosynthesis [J]. Journal of Plant Research, 2011, 124(1): 183–192.
[38] 郝向阳, 孙雪丽, 王天池, 吕科良, 赖钟雄, 程春振. 植物PAL基因及其编码蛋白的特征与功能研究进展[J]. 热带作物学报, 2018, 39(7): 1452–1461.
[39] 高雪. 植物苯丙氨酸解氨酶研究进展[J]. 现代农业科技, 2009(1): 30–33.
[40] 付晓莹, 郭慧敏, 丛薇, 孟祥才. 外源性Na2S2O4和干旱逆境对黄芩抗氧化系统相关酶活性的影响[J]. 现代中药研究与实践, 2017, 31(5): 5–8.
[41] 赵微, 尹静, 詹亚光, 任春林, 王艳, 马泓思, 苏欣. 温度胁迫对白桦悬浮细胞中三萜积累及防御酶活性的影响[J]. 中国生物工程杂志, 2013, 33(2): 34–40.
[42] Peng X, Wu H, Chen H J, Zhang Y J, Qiu D, Zhang Z Y. Transcriptome profiling reveals candidate flavonol-related genes of Tetrastigma hemsleyanum under cold stress [J]. BMC Genomics, 2019, 20(1): 687.
[43] 徐晓梅, 杨署光. 苯丙氨酸解氨酶研究进展[J]. 安徽农业科学, 2009, 37(31): 15115–15119,15122.
[44] 孙新荣, 仲彩萍, 裴建文, 孙万仓. 半夏防御酶系对Fusarium oxysporum和Phytophthora parasitica侵染的动态反应[J]. 植物保护, 2016, 42(2): 109–113.
[45] 赵雪姣, 秦雪梅, 王梦亮, 高芬. 根腐病菌侵染对黄芪苯丙烷途径关键酶活性的影响[J]. 中国农学通报, 2020, 36(25): 115–120.
[46] 张宁, 张晶晶, 李雅淑, 李冉琪, 侯微, 曲正义, 李亚丽, 郑培和. 人参抗黑斑病资源筛选及其相关基因差异表达分析[J/OL]. 分子植物育种, https://kns.cnki.net/kcms/detail/46.1068.S.20220323.2108.006.html. 2022-3-24.
[47] 刘卫红, 程水源. 光照及机械损伤对银杏叶苯丙氨酸解氨酶活性的影响[J]. 湖北农业科学, 2003(3): 73–75.
[48] 刘盟盟, 贾丽, 程路芸, 张洪芹, 臧晓琳, 宝音陶格涛, 张汝民, 高岩. 冷蒿酚酸及其抗氧化防御酶活性对机械损伤的响应[J]. 植物生态学报, 2017, 41(2): 219–230.
[49] 祖艳群, 孙晶晶, 闵强, 李祖然, 冯光泉, 李元. 二年生三七中黄酮含量对砷胁迫的响应及其酶学机理[J]. 应用与环境生物学报, 2014, 20(6): 1005–1010.
[50] 薛军, 马双, 邓霞, 李成磊, 陈惠, 吴琦. 苦荞苯丙氨酸解氨酶基因(FtPAL)的原核表达及其逆向催化酶学性质分析[J]. 农业生物技术学报, 2014, 22(1): 64–70.
[51] 高珂, 王玲, 吴素瑞, 隋春. 调控药用植物药效成分合成的转录因子研究进展[J]. 中草药, 2015, 46(20): 3100–3108.
[52] Ma D, Constabel C P. MYB repressors as regulators of phenylpropanoid metabolism in plants [J]. Trends in Plant Science, 2019, 24(3): 275–289.
[53] 刘光瑞, 宗渊, 李云, 曹东, 刘宝龙, 包雪梅, 李建民. 当归转录因子AsMYB44的克隆与功能研究[J]. 浙江农业学报, 2023, 35(6): 1253–1264.
[54] Li L, Wang D H, Zhou L, Yu X D, Yan X Y, Zhang Q, Li B, Liu Y C, Zhou W, Cao X Y, Wang Z Z. JAResponsive transcription factor SmMYB97 promotes phenolic acid and tanshinone accumulation in Salvia miltiorrhiza [J]. Journal of Agricultural and Food Chemistry, 2020, 68(50): 14850–14862.
[55] Shi M, Du Z Y, Hua Q, Kai G Y. CRISPR/Cas9–mediated targeted mutagenesis of bZIP2 in Salvia miltiorrhiza leads to promoted phenolic acid biosynthesis [J]. Industrial Crops & Products, 2021, 167: 113560.
[56] Wang Y J, Sheng L P, Zhang H R, Du X P, An C, Xia X L, Chen F D, Jiang J F, Chen S M. CmMYB19 over-expression improves aphid tolerance in chrysanthemum by promoting lignin synthesis [J]. International Journal of Molecular Sciences, 2017, 18(3): 619.
[57] Su L T, Lv A M, Wen W W, Fan N N, Li J J, Gao L, Zhou P, An Y. MsMYB741 is involved in alfalfa resistance to aluminum stress by regulating flavonoid biosynthesis [J]. Plant Journal, 2022, 112(3): 756–771.
[58] 陈媞颖, 刘娟, 袁媛, 周骏辉, 黄璐琦. 黄芩bHLH转录因子基因家族生物信息学及表达分析[J]. 中草药, 2018, 49(3): 671–677.
[59] Kayani S I, Shen Q, Rahman S U, Fu X Q, Li Y P, Wang C, Hassani D, Tang K. Transcriptional regulation of flavonoid biosynthesis in Artemisia annua by AaYABBY5[J]. Horticulture Research, 2021, 8(1): 257.
[60] Yu H, Li D Y, Yang D F, Xue Z Y, Li J, Xing B C, Yan K J, Han R L, Liang Z S. SmKFB5 protein regulates phenolic acid biosynthesis by controlling the degradation of phenylalanine ammonia–lyase in Salvia miltiorrhiza [J]. Journal of Experimental Botany, 2021, 72(13): 4915–4929.
[61] 梁浩, 孙海, 钱佳奇, 张亚玉. 药用植物代谢调控的组学研究进展[J]. 中药材, 2023(8): 2085–2092.
[62] Zhang G H, Jiang N H, Song W L, Ma C H, Yang S C, Chen J W. De novo sequencing and transcriptome analysis of Pinellia ternata identify the candidate genes involved in the biosynthesis of benzoic acid and ephedrine [J]. Frontiers in Plant Science, 2016, 7: 1209.
[63] 程小卿, 江浩铭, 崔业旋, 林锦如, 王利国. 内生真菌Alternaria sp. GHX-P17代谢产物防治广藿香青枯病及保护酶的变化[J]. 广西植物, 2023, 43(7): 1244–1251.
|