[1] Liu R, Kang Y, Wan S. Evaluation of methods of nutrient and water management on tea performance and nutrient loss in the Danjiangkou Reservoir area, China [J]. Archives of Agronomy and Soil Science, 2016, 62(8): 1123–1135.
[2] Huang Z, Wang F, Li B, Pang Y, Du Z. Appropriate nitrogen form and application rate can improve yield and quality of autumn tea with drip irrigation [J]. Agronomy, 2023, 13(5): 1303.
[3] 张子威, 王贞红. 西藏林芝市高海拔地区茶树设施栽培必要性与技术要点[J]. 农业工程技术, 2021, 41(19): 64–66.
[4] 黄福平, 陈荣冰. 茶树抗旱生理研究进展[J]. 福建茶叶, 2000, 23(3): 2–5.
[5] Netto L A, Jayaram K M, Puthur J T. Clonal variation of tea [Camellia sinensis (L.) O. Kuntze] in countering water deficiency[J]. Physiology and Molecular Biology of Plants, 2010, 16: 359–367.
[6] 庞永磊, 王凤新, 黄泽军, 李斌, 胡芳东, 夏英三. 适宜施氮钾水平提高滴灌秋茶的产量及品质[J]. 农业工程学报, 2019, 35(24): 98–103.
[7] 苏有健, 廖万有, 丁勇, 王宏树, 夏先江. 不同氮营养水平对茶叶产量和品质的影响[J]. 植物营养与肥料学报, 2011, 17(6): 1430–1436.
[8] Xiao F, Yang Z, Huang H, Yang F, Zhu L, Dong H. Nitrogen fertilization in soil affects physiological characteristics and quality of green tea leaves [J]. HortScience, 2018, 53(5): 715–722.
[9] Smith B G, Stephens W, Burgess P J, Carr M KV. Effects of light, temperature, irrigation and fertilizer on photosynthetic rate in tea (Camellia sinensis) [J]. Experimental Agriculture, 1993, 29(3): 291–306.
[10] 彭晚霞, 王克林, 宋同清, 曾馥平, 王久荣, 肖孔操. 施肥结构对茶树Camellia sinensis (L.) Kuntze光合作用及其生态生理因子日变化的影响[J]. 生态学报, 2008(1): 84–91.
[11] 陈贤田, 柯世省. 茶树光合“午休”的原因分析[J]. 浙江林业科技, 2002, 22(3): 80–83.
[12] Xiao Z D, Cheng P, Ma Y C. Comparison of photosynthesis characteristics, bud characters and chemical compositions for tea in different planting models [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2011, 35(2): 15–19.
[13] 吴丹. 合理灌溉对茶园高产优质的影响分析[J]. 广东茶业, 2019(6): 32–35.
[14] 邹战强, 陈子平, 朱胜浩. 喷灌对茶树生长发育的影响分析[J]. 现代农业科技, 2022(7): 43–44.
[15] Ruan L, Wang L, Cheng H, Wei K, Li J, Chang S, Ludewig U. Smart root foraging strategy guides acclimation of tea (Camellia sinensis L.) plants to potassium heterogeneity [J]. 2022, 23(15), 8585.
[16] Huang W, Lin M, Liao J, Li A, Wugyan T, Chen X, Sun B, Liu S, Zheng P. Effects of potassium deficiency on the growth of tea (Camelia sinensis) and strategies for optimizing potassium levels in soil: A critical review [J]. Horticulturae, 2022, 8(7): 660.
[17] Xie X, Sun Z, Zhang X, Han X. Novel aspects of regulation of nitrogen responses in the tea plant (Camellia sinensis (L.)) [J]. Agronomy, 2023, 13(1): 144.
[18] Feng Y, Sunderland T. Feasibility of tea tree intercropping plantations on soil ecological service function in China [J]. Agronomy, 2023, 13(6): 1548.
[19] 李伟, 唐茜, 谭礼强, 张莹, 陈伟, 王正阳, 陈强. 不同施肥方式及肥料对幼龄茶树生长及主要生化成分含量的影响[J]. 东北农业大学学报, 2019, 50(2): 28–36.
[20] Rajan J, Anandhan S V. Influence of nitrogen and potassium on root nutrient and root CEC of different tea cultivars (Camellia sinensis, C. assamica and C. assamica spp. Lasiocalyx) [J]. Rhizosphere, 2016(1): 36–44.
[21] Liu X, Tian J, Liu G, Sun L L. Multi-omics analysis reveals mechanisms of strong phosphorus adaptation in tea plant roots [J]. International Journal of Molecular Sciences, 2023, 24(15): 12431.
[22] Zhao M, Zhao J, Yuan J, Lauren Hale, Wen T, Huang Q, Jorge M V, Zhou J Z, George A K, Shen Q R. Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth [J]. Plant, Cell & Environment, 2021, 44(2): 613–628.
[23] 蒋建华, 关意昭, 周世英. 水肥耦合效应对茶叶产量和品质的影响[J]. 南方园艺, 2013, 24(6): 14–16.
[24] 张华, 李春雷, 李伟, 刘祖锋, 黄晓琴, 张群峰, 阮建云. 优化追肥养分配方对提升茶树新梢品质的效果[J]. 江苏农业科学, 2022, 50(6): 125–130.
[25] Manzoor, Ma L, Ni K. Effect of integrated use of rapeseed cake, biochar and chemical fertilizers on root growth, nutrients use efficiency and productivity of tea[J]. Agronomy, 2022, 12(8): 1823.
[26] 缪子梅, 褚琳琳, 肖梦华, 蔡彬. 喷灌条件下水分调控对白茶生长发育及产量的影响[J]. 节水灌溉, 2017(4): 30–32.
[27] 陈妍曦, 孙彬妹, 刘少群, 林晓强, 肖熙, 郑鹏. 茶园不同灌溉方式的综合效果分析[J]. 茶叶学报, 2020, 61(2): 79–83.
[28] 杨净云, 张兰芬, 翟国亮, 刘杨, 宗洁. 不同灌溉方式对云南大叶茶树生长发育及产量的影响研究[J]. 节水灌溉, 2012(4): 5–7.
[29] De Costa W A, Mohotti A J, Wijeratne M A. Ecophysiology of tea [J]. Brazilian Journal of Plant Physiology, 2007, 19: 299–332.
[30] Burgess P J, Carr M K V. Responses of tea (Camellia sinensis) clones to drought. I. Yield, dry matter production and partitioning [J]. Aspects of Applied Biology, 1993, 34: 249–258.
[31] Huang Y, Jiang H, Wang W, Wang W, Sun D. Soil moisture content prediction model for tea plantations based on SVM optimised by the bald eagle search algorithm [J]. Cognitive Computation and Systems, 2021, 3(4): 351–360.
[32] 吴丽丽, 王德炉, 李自玉. 土壤水分对贵州小叶苦丁茶产量及品质的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(1): 111–117.
[33] 杨清霖, 杨向德, 季凌飞, 马立锋, 阮建云. 滴灌施肥对幼龄茶树生长和养分吸收的影响[J]. 茶叶科学, 2020, 40(1): 96–97.
[34] 唐颢, 吴家尧, 黎健龙, 吴利荣, 唐劲驰. 茶园滴灌施肥的增产提质及土壤养分效应研究[J]. 茶叶科学, 2013, 33(1): 85–90.
[35] Mokaya N. Effect of varying rates of organic and inorganic fertilizers on growth, yield and nutrient use efficiency of clonal tea (Camellia sinensis (L.) kuntze) [D]. Nairobi: Master Dissertation of University of Nairobi, 2016.
[36] Qiao C, Xu B, Han Y, Wang J, Wang X, Liu L, Liu W, Wan S, Tan H, Liu Y, Zhao X. Synthetic nitrogen fertilizers alter the soil chemistry, production and quality of tea. A meta-analysis [J]. Agronomy for Sustainable Development, 2018, 38: 1–10.
[37] 中国茶叶学会. 茶学学科发展报告[M]. 北京: 中国科学技术出版社, 2010.
[38] Gebrewold A Z. Review on integrated nutrient management of tea (Camellia sinensis L.) [J]. Cogent Food & Agriculture, 2018, 4(1): 1543536.
[39] 刘美雅, 伊晓云, 石元值, 马立锋, 阮建云. 茶园土壤性状及茶树营养元素吸收,转运机制研究进展[J]. 茶叶科学, 2019, 35(2): 110–120.
[40] Sánchez-Bermúdez M, Del Pozo J C, Pernas M. Effects of combined abiotic stresses related to climate change on root growth in crops[J]. Frontiers in plant science, 2022, 13: 918537.
[41] Stephens W, Carr M K V. Seasonal and clonal differences in shoot extension rates and numbers in tea (Camellia sinensis) [J]. Experimental Agriculture, 1990, 26(1): 83–98.
[42] Yin D, Wang Y, Huang Y. Predicting soil moisture content of tea plantation using support vector machine optimized by arithmetic optimization algorithm [J]. Journal of Algorithms & Computational Technology, 2023, 17: 17483026221151198.
[43] Upadhyaya H, Panda S K, Dutta B K. Variation of physiological and antioxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery [J]. Acta physiologiae plantarum, 2008, 30(4): 457–468.
[44] Liu Z, Yang D, Zhang G, Zheng L, Chen C, Sun X, Yu F. Effects of soil physical and chemical properties on the quality of Nanjing ‘Yuhua’ Tea, a type of famous green tea [J]. Horticulturae, 2023, 9(2): 189.
[45] Chen Y, Wang F, Wu Z, Jiang F, Yu W, Yang J, Chen J, Jian G, You Z, Zeng L. Effects of long-term nitrogen fertilization on the formation of metabolites related to tea quality in subtropical China [J]. Metabolites, 2021, 11(3): 146.
[46] Jia X, Ye J, Wang H, Li L, Wang F, Zhang Q, Chen J, Zheng X, He H. Characteristic amino acids in tea leaves as quality indicator for the evaluation of Wuyi Rock Tea in different culturing regions [J]. Journal of Applied Botany & Food Quality, 2018, 91:187–193.
[47] Lin Z H, Qi Y P, Chen R B, Fang Z Z, Li S C. Effects of phosphorus supply on the quality of green tea [J]. Food Chemistry, 2012, 130(4): 908–914.
[48] 李源华. 磷素对茶叶品质影响的探讨[J]. 安徽农业科学, 2014, 42(29): 10052–10053.
[49] He D, Chen X, Zhang Y, Huang Z, Yin J, Weng X, Yang W, Wu H, Zhang F, Wu L. Magnesium is a nutritional tool for the yield and quality of oolong tea (Camellia sinensis L.) and reduces reactive nitrogen loss [J]. Scientia Horticulturae, 2023, 308: 111590.
|