[1] 李爱国,屈霞,李小科,余筱南. 植物耐热性的研究进展[J]. 作物研究, 2007,21(5): 493—497.
[2] 田尉婧,殷学仁,李鲜,陈昆松. 热激转录因子调控植物逆境响应研究进展[J]. 园艺学报, 2017,44(1): 179—192.
[3] 刘克禄,陈卫国. 植物耐热相关基因研究进展[J]. 植物遗传资源学报, 2015,16(1): 127—132.
[4] 申惠翡,赵冰,徐静静. 15个杜鹃花品种叶片解剖结构与植株耐热性的关系[J]. 应用生态学报, 2016,27(12): 3895—3904.
[5] 孙保娟,黎振兴,罗少波,金庆敏,李植良. 不同茄子材料的耐热性鉴定评价[J]. 热带作物学报, 2012,33(10): 1841—1845.
[6] 彭永宏,章文才. 猕猴桃叶片耐热性指标研究[J]. 武汉植物学研究, 1995,13(1): 70—74.
[7] 马晓娣,王丽,汪矛,彭惠茹. 不同耐热性小麦品种在热锻炼和热胁迫下叶片相对电导率及超微结构的差异[J]. 中国农业大学学报, 2003(5): 4—8.
[8] Du Y C, Tachibana S. Effect of supraoptimal root temperature on the growth, root respiration and sugar content of cucumber plants[J]. Scientia Horticulturae, 1994,58(4): 289—301.
[9] Chen W R, Zheng J S, Li Y Q, Guo W D. Effects of high temperature on photosynthesis, chlorophyll fluorescence, chloroplast ultrastructure, and antioxidant activities in fingered citron[J]. Russian Journal of Plant Physiology, 2012,59(6): 732—740.
[10] Zhang J, Jiang X D, Li T L, Cao X J. Photosynthesis and ultrastructure of photosynthetic apparatus in tomato leaves under elevated temperature[J]. Photosynthetica, 2014,52(3): 430—436.
[11] 徐胜,李建龙,何兴元,陈玮. 冷季型草坪草的耐热性调控研究进展[J]. 应用生态学报, 2006(6): 1117—1122.
[12] 张景云,赵晓东,万新建,熊德桃,胡新龙,缪南生. 小白菜耐热性鉴定及其耐热性分析[J]. 核农学报, 2014,28(1): 146—153.
[13] 何霞,杨志民,徐迎春. 不同品种高羊茅叶片细胞膜热稳定性鉴定[J]. 中国草地学报, 2008,30(2): 74—78.
[14] 郑宇,何天友,陈凌艳,陈礼光,荣俊冬,郑郁善. 高温胁迫下西洋杜鹃的生理响应及耐热性[J]. 福建林学院学报, 2012,32(4): 326—335.
[15] 潘瑞炽. 植物生理学(第7版)[M]. 北京: 高等教育出版社, 2012.
[16] 王飞,马金玲,秦丹丹,田雪军,倪中福,姚颖垠,胡兆荣,孙其信,彭惠茹. 小麦耐热及热敏感基因型在高温胁迫下膜透性及膜脂组分的差异[J]. 农业生物技术学报, 2013,21(8): 904—910.
[17] 杨华庚,杨重法,陈慧娟,颜速亮,陈定光. 蝴蝶兰不同耐热性品种幼苗对高温胁迫的生理反应[J]. 中国农学通报, 2011,27(2): 144—150.
[18] He Y, Huang B R. Differential responses to heat stress in activities and isozymes of four antioxidant enzymes for two cultivars of kentucky bluegrass contrasting in heat tolerance[J]. Journal of the American Society for Horticultural Science, 2010,135(2): 116—124.
[19] 刘宇,宋希强,史佑海,赵莹. 高温胁迫下海南杜鹃和白花杜鹃的生理响应比较分析[J]. 分子植物育种, 2018,16: 1—12.
[20] 杜晓华,刘会超,崔向南,李美灵. 水杨酸对大花三色堇幼苗耐热性的影响[J]. 广西植物, 2016,36(6): 728—734.
[21] 李小玲,雒玲玲,华智锐. 高温胁迫下高山杜鹃的生理生化响应[J]. 西北农业学报, 2018,27(2): 253—259.
[22] 呼彧. 菜豆耐热生理生化特性及外源物质处理效应研究[D]. 杨凌: 西北农林科技大学硕士学位论文, 2009.
[23] 陈秀晨,王士梅,朱启升,汪婉琳,杨前进,张德文,李万成. 水稻品种耐热性与相关生化指标的关联分析[J]. 农业环境科学学报, 2010,29(9): 1633—1639.
[24] Han Y Y, Fan S G, Zhang Q, Wang Y N. Effect of heat stress on the MDA, proline and soluble sugar content in leaf lettuce seedlings[J]. Agricultural Sciences, 2017,4(5): 112—115.
[25] 罗登,左福元,邱健东,王少青,李健,袁扬,张磊鑫,曾兵. 不同鸭茅品种的耐热性评价[J]. 草业科学, 2015,32(6): 952—960.
[26] 林俊芳,钟凤林,胡海非,许茹,林义章,黄碧琦. 茄子苗期耐热性的模糊综合评判[J]. 植物遗传资源学报, 2015,16(2): 389—394.
[27] 张施君,周厚高,潘文华,余卓玲. 麝香百合的抗热生理指标初探[J]. 中国农学通报, 2005(3): 240—242.
[28] Haque M S, Kjaer K H, Rosenqvist E, Sharma D K, Ottosen C O. Heat stress and recovery of photosystem II efficiency in wheat (Triticum aestivum L.) cultivars acclimated to different growth temperatures[J]. Environmental & Experimental Botany, 2014,99(1): 1—8.
[29] 徐芬芬,柯维忠,王爱斌,蒋海燕. NaCl预处理缓解小白菜高温胁迫的光合生理机制[J]. 生态科学, 2016,35(3): 161—164.
[30] 徐晓昀. 高温胁迫对黄瓜叶片光合特性的影响[D]. 兰州: 甘肃农业大学硕士学位论文, 2007.
[31] Zha Q, Xi X J, Jiang A L, Wang S P, Tian Y H. Changes in the protective mechanism of photosystem II and molecular regulation in response to high temperature stress in grapevines[J]. Plant Physiology & Biochemistry, 2016,101(4): 43—53.
[32] Luo H B, Ma L, Xi H F, Duan W, Li S H, Loescher W, Wang J F, Wang L J. Photosynthetic responses to heat treatments at different temperatures and following recovery in grapevine (Vitis amurensis L.) leaves[J]. Plos One, 2011,6(8): e23033.
[33] 梁雪,颜坤,梁燕,张雯婷,魏佑营,董新纯,孟庆伟,赵世杰. 高温对耐热大葱品种PSⅡ和抗氧化酶活性的影响[J]. 园艺学报, 2012,39(1): 175—181.
[34] Shainnfer T, Ban-DarHsu. Chlorophyll degradation in heat-treated chlorella pyrenoidosa. A flow cytometric study[J] . Australian Journal of Plant Physiology, 2001,28(1): 79—83.
[35] Zhang J, Jiang X D, Li T L, Cao X J. Photosynthesis and ultrastructure of photosynthetic apparatus in tomato leaves under elevated temperature[J]. Photosynthetica, 2014,52(3): 430—436.
[36] Zhou R, Yu X Q, Kjaer K H, Rosenqvist E, Ottosen C O, Wu Z. Screening and validation of tomato genotypes under heat stress using Fv/Fm, to reveal the physiological mechanism of heat tolerance[J]. Environmental & Experimental Botany, 2015,118: 1—11.
[37] 陶志强,陈源泉,邹娟秀,李超,袁淑芬,闫鹏师,江涛,隋鹏. 不同耐热型春玉米品种对高温的光谱特征响应[J]. 光谱学与光谱分析, 2016,36(2): 520—526.
[38] 汤照云,吕明,张霞,徐海霞,张慧莉. 高温胁迫对葡萄叶片三项生理指标的影响[J]. 石河子大学学报(自然科学版), 2006(2): 198—200.
[39] Sekmen A H, Ozgur R, Uzilday B, Turkan I. Reactive oxygen species scavenging capacities of cotton (Gossypium hirsutum) cultivars under combined drought and heat induced oxidative stress[J]. Environmental & Experimental Botany, 2014,99: 141—149.
[40] 徐海,宋波,樊小雪,袁希汉,陈龙正. 不结球白菜耐热相关基因BcPLDγ的克隆和表达分析[J]. 湖北民族学院学报(自科版), 2017,35(3): 241—246.
[41] Scharf K D, Rose S, Zott W, Sch?ffl F, Nover L. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA—binding domain of the yeast HSF[J]. Embo Journal, 1990,9(13): 4495—4501.
[42] Li Z J, Zhang L L, Wang A X, Xu X Y, Li J F. Ectopic Overexpression of SlHsfA3, a heat stress transcription factor from tomato, confers increased thermotolerance and salt hypersensitivity in germination in transgenic Arabidopsis[J]. Plos One, 2013,8(1): e54880.
[43] Zhang J, Chen H Y, Wang H H, Li B, Yi Y J, Kong F J, Liu J Y, Zhang H X. Constitutive expression of a tomato small heat shock protein gene LeHSP21, improves tolerance to high-temperature stress by enhancing antioxidation capacity in tobacco[J]. Plant Molecular Biology Reporter, 2016,34(2): 399—409.
[44] 赵立娜,段硕楠,张华宁,郭秀林,李国良. 玉米热激转录因子基因ZmHsf25的克隆、特性与耐热性功能分析[J]. 作物学报, 2017,43(7): 1021—1029.
[45] Li H C, Zhang H N, Li G, Liu Z H. Expression of maize heat shock transcription factor gene ZmHsf06 enhances the thermotolerance and drought-stress tolerance of transgenic Arabidopsis[J]. Functional Plant Biology, 2015,42(11): 1080—1090.
[46] Jiang Y L, Zheng Q Q, Chen L, Liang Y N, Wu J D. Ectopic overexpression of maize heat shock transcription factor gene ZmHsf04 confers increased thermo and salt-stress tolerance in transgenic Arabidopsis[J]. Acta Physiologiae Plantarum, 2018,40(1): 9.
[47] 赵立娜,刘子会,段硕楠,张园园,李国良,郭秀林. 小麦热激转录因子基因TaHsfB2d的克隆和特性及其对耐热性的调控[J]. 作物学报, 2018,44(1): 53—62.
[48] 庞强强,李植良,罗少波,陈日远,金庆敏,黎振兴,李德明,孙保娟,孙光闻. 高温胁迫下茄子qRT-PCR内参基因筛选及稳定性分析[J]. 园艺学报, 2017,44(3): 475—486.
[49] 查倩,奚晓军,蒋爱丽,田益华. 高温胁迫对葡萄高温相关基因和蛋白表达的影响[J]. 中国农业科学, 2017,50(9): 1674—1683.
[50] Chen H H. Adaptability of crop plants to high temperature stress[J]. Crop Science, 1982,22(4): 719—725.
[51] Xu S, Li J, Zhang X, Wei H, Cui L J. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress[J]. Environmental & Experimental Botany, 2006,56(3): 274—285.
[52] 胡伟娟,张启翔,潘会堂,董玲玲. 灰岩皱叶报春和滇北球花报春在热锻炼和热胁迫下叶肉细胞超微结构的差异[J]. 华南农业大学学报, 2010,31(3): 43—46.
[53] 吕俊,张蕊,宗学凤,王三根,何光华. 水杨酸对高温胁迫下水稻幼苗抗热性的影响[J]. 中国生态农业学报, 2009,17(6): 1168—1171.
[54] 孙军利,赵宝龙,郁松林. 外源水杨酸(SA)对高温胁迫下葡萄幼苗耐热性诱导研究[J]. 水土保持学报, 2014,28(3): 290—294.
[55] 张睿佳,李瑛,虞秀明,娄玉穗,许文平,张才喜,赵丽萍,王世平. 高温胁迫与外源油菜素内酯对‘巨峰’葡萄叶片光合生理和果实品质的影响[J]. 果树学报, 2015,32(4): 590—596.
[56] 杨华庚,颜速亮,陈慧娟,杨重法,杨福孙,刘子凡. 高温胁迫下外源茉莉酸甲酯、钙和水杨酸对蝴蝶兰幼苗耐热性的影响[J]. 中国农学通报, 2011,27(28): 150—157.
[57] 蓝茂锋,张志忠. 水杨酸和Ca2+缓解观赏辣椒高温伤害的机理研究[J]. 南方农业, 2012,6(12): 74—77.
[58] 段骅,苏京平,傅亮,剧成欣,刘立军,杨建昌. 耐热耐旱性不同水稻品种的农艺和生理性状[J]. 植物生理学报, 2015(10): 1658—1668.
[59] Li P S, Yu T F, He G H, Chen M, Zhou Y B, Chai S C, Xu Z S, Ma Y Z. Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses[J]. BMC Genomics, 2014,15(1): 1009.
[60] Gong B H, Yi J, Wu J, Sui J J, Khan M A, Wu Z, Zhong X H, Seng S S, He G N, Yi M F. LlHSFA1, a novel heat stress transcription factor in lily (Lilium longiflorum), can interact with LlHSFA2 and enhance the thermotolerance of transgenic Arabidopsis thaliana[J]. Plant Cell Reports, 2014, 33(09):1519—1533.
[61] 赵状军,胡龙兴,胡涛,傅金民. 不同品系高羊茅应答高温胁迫的初级代谢产物分析[J]. 草业学报, 2015,24(3): 58—69.
[62] Zhang X X, Wang X L, Zhong J W, Zhou Q, Wang X, Cai J, Dai T B, Cao W X, Jiang D. Drought priming induces thermo-tolerance to post-anthesis high-temperature in offspring of winter wheat[J]. Environmental & Experimental Botany, 2016,127: 26—36.
[63] 彭燕,李州. 干旱预处理对抗旱性不同的2个草地早熟禾品种耐热性能的影响[J]. 草业学报, 2013,22(5): 229—238.
[64] 李胜利,夏亚真,孙治强. 冷激对高温胁迫下番茄幼苗生长及花芽分化的影响[J]. 应用生态学报, 2016,27(2): 477—483.
[65] Guo M, Liu J H, Ma X, Luo D X, Gong Z H, Lu M H. The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses[J]. Frontiers in Plant Science, 2016,7(273): 114.
[66] Nahar K, Hasanuzzaman M, Fujita M. 12-Heat stress responses and thermotolerance in soybean[J]. Abiotic & Biotic Stresses in Soybean Production, 2016: 261—284.
[67] Yang X D, Zhu W M, Zhang H, Liu N, Tian S B. Heat shock factors in tomatoes: genome-wide identification, phylogenetic analysis and expression profiling under development and heat stress[J]. Peerj, 2016,4(5):e1961.
[68] Huang X Y, Tao P, Li B Y, Wang W H, Yue Z C, Lei J L, Zhong X M. Genome-wide identification, classification, and analysis of heat shock transcription factor family in Chinese cabbage (Brassica rapa pekinensis)[J]. Genetics & Molecular Research Gmr, 2015,14(1): 2189.
[69] Hu Y, Han Y T, Zhang K, Zhao F L, Li Y, Zheng Y, Wang Y J, Wen W Q. Identification and expression analysis of heat shock transcription factors in the wild Chinese grapevine[J]. Plant Physiology & Biochemistry, 2016,99(3): 1—10.
|