[1] 聂飞,张玉春. 我国蓝莓产业发展的机遇与挑战[J]. 北方园艺, 2014(4): 165—170.[2] 李亚东,刘海广,唐雪东. 蓝莓栽培图解手册[M]. 北京: 中国农业出版社, 2014.[3] 何科佳,曾斌,张力,潘美山. 我国蓝莓种质资源利用研究进展[J]. 湖南农业科学, 2013(23): 14—17.[4] Rose A E S, Senthilkumar S. Studies on the mycorrhizal association of Rhododendron arboreum Sm. ssp nilagiricum (Zenker) Tagg[J]. Tropical Ecology, 2016,57(1): 69—76.[5] 袁继鑫,侯智霞,孙莹. 大兴安岭地区野生蓝莓菌根真菌着生状态的初步观察[J]. 甘肃农业大学学报, 2012(5): 105—108.[6] Brundrett M C. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis[J]. Plant and Soil, 2009,320(1-2): 37—77.[7] Cairney J, Meharg A A. Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions[J]. European Journal of Soil Science, 2003,54(4): 735—740.[8] 聂飞,房小晶,周红英,周艳. 我国蓝莓栽培现状及在贵州的产业化发展前景[J]. 贵州农业科学, 2010(10): 69—71.[9] 李性苑,杨芩,田鑫,李东平,钟程. 栽培蓝莓菌根侵染特性研究[J]. 中国南方果树, 2015,44(4): 11—15.[10] Vega A R, Garciga M, Rodriguez A, Prat L, Mella J. Blueberries mycorrhizal symbiosis outside of the boundaries of natural dispersion for Ericaceous plants in Chile[J]. Acta Horticulturae, 2009,810: 665—671.[11] Soudzilovskaia N A, Vaessen S, van’t Zelfde M, Raes N. Global patterns of mycorrhizal distribution and their environmental drivers[M]// Tedersoo L. Biogeography of Mycorrhizal Symbiosis. Springer International Publishing, 2017: 223—235.[12] Vohník M, Burdiková Z, Albrechtová J, Vosátka M. Testate amoebae (Arcellinida and Euglyphida) vs. ericoid mycorrhizal and DSE fungi: a possible novel interaction in the mycorrhizosphere of ericaceous plants?[J]. Microbial Ecology, 2009,57(1): 203—214.[13] Tian W, Zhang C Q, Qiao P, Milne R. Diversity of culturable ericoid mycorrhizal fungi of Rhododendron decorum in Yunnan, China[J]. Mycologia. 2011,103(4): 703—709.[14] Vohník M, Sadowsky J J, Kohout P, Lhotáková Z, Nestby R, Kola?ík M. Novel root-fungus symbiosis in Ericaceae: sheathed ericoid mycorrhiza formed by a hitherto undescribed Basidiomycete with affinities to Trechisporales[J]. PLoS One, 2012,7(e395246).[15] Grunewaldt-St?cker G, von Alten H. Is the root-colonizing endophyte Acremonium strictum an ericoid mycorrhizal fungus?[J]. Mycorrhiza, 2016,26(5): 429—440.[16] Wei X, Chen J, Zhang C, Pan D. Differential gene expression in Rhododendron fortunei roots colonized by an ericoid mycorrhizal fungus and increased nitrogen absorption and plant growth[J]. Frontiers in Plant Science, 2016, 7: 1594.[17] Chiapello M, Martino E, Perotto S. Common and metal-specific proteomic responses to cadmium and zinc in the metal tolerant ericoid mycorrhizal fungus Oidiodendron maius Zn[J]. Metallomics, 2015,7(5): 805—815.[18] Lin L, Lee M, Chen J. Decomposition of organic matter by the ericoid mycorrhizal endophytes of Formosan rhododendron (Rhododendron formosanum Hemsl.)[J]. Mycorrhiza, 2011,21(5): 331—339.[19] Ouml G, Cker G, von den Berg C, Knopp J, von Allen H. Interactions of ericoid mycorrhizal fungi and root pathogens in Rhododendron: in vitro tests with plantlets in sterile liquid culture[J]. Plant Root, 2013, 7: 33—48.[20] Vohník M, Sadowsky J J, Luke?ová T, Albrechtová J, Vosátka M. Inoculation with a ligninolytic basidiomycete, but not root symbiotic ascomycetes, positively affects growth of highbush blueberry (Ericaceae) grown in a pine litter substrate[J]. Plant and Soil, 2012,355(1-2): 341—352.[21] 许庆龙,刘晓敏,徐小兵,李晴晴,张红,肖家欣. 4种丛枝菌根真菌对南高丛蓝莓抗旱性的影响[J]. 浙江大学学报(农业与生命科学版), 2016,42(4): 427—434.[22] Farias D D H, Pinto M A B, Carra B, Schuch M W, Souza P V D D. Development of seedlings of blueberry inoculated arbuscular mycorrhizal fungi[J]. Revista Brasileira de Fruticultura, 2014,36(3): 655—663.[23] Arriagada C, Manquel D, Cornejo P, Soto J, Sampedro I, Ocampo J. Effects of the co-inoculation with saprobe and mycorrhizal fungi on Vaccinium corymbosum growth and some soil enzymatic activities[J]. Journal of Soil Science and Plant Nutrition, 2012,12(2): 283—294.[24] Read D J. The structure and function of the ericoid mycorrhizal root[J]. Annals of Botany, 1996,77(4): 365—374.[25] Michelsen A, Schmidt I K, Jonasson S, Quarmby C, Sleep D. Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non-and arbuscular mycorrhizal species access different sources of soil nitrogen[J]. Oecologia. 1996,105(1): 53—63.[26] Scagel C F. Inoculation with ericoid mycorrhizal fungi alters fertilizer use of highbush blueberry cultivars[J]. HortScience, 2005,40(3): 786—794.[27] 高丽霞,李森,莫爱琼,刘凤民,陈羽,周再知,曾任森. 丛枝菌根真菌接种对兔眼蓝莓在华南地区生长的影响[J]. 生态环境学报, 2012,21(8): 1413—1417.[28] Carrillo R, Guerrero J, Rodríguez M, Meri?o-Gergichevich C. Colonization of blueberry (Vaccinium corymbosum) plantlets by ericoid mycorrhizae under nursery conditions[J]. Ciencia e Investigación Agraria, 2016,42(3): 365—374.[29] Di Vietro L, Daghino S, Abbà S, Perotto S. Gene expression and role in cadmium tolerance of two PLAC8-containing proteins identified in the ericoid mycorrhizal fungus Oidiodendron maius[J]. Fungal Biology, 2014,118(8): 695—703.[30] Shine A M, Shakya V P, Idnurm A. Phytochelatin synthase is required for tolerating metal toxicity in a basidiomycete yeast and is a conserved factor involved in metal homeostasis in fungi[J]. Fungal Biology and Biotechnology, 2015,2(1): 3.[31] Daghino S, Martino E, Perotto S. Model systems to unravel the molecular mechanisms of heavy metal tolerance in the ericoid mycorrhizal symbiosis[J]. Mycorrhiza, 2016,26(4): 263—274.[32] Gallego S M, Pena L B, Barcia R A, Azpilicueta C E, Iannone M F, Rosales E P, Zawoznik M S, Groppa M D, Benavides M P. Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms[J]. Environmental and Experimental Botany, 2012,83: 33—46.[33] Khouja H R, Abbà S, Lacercat-Didier L, Daghino S, Doillon D, Richaud P, Martino E, Vallino M, Perotto S, Chalot M, Blaudez D. OmZnT1 and OmFET, two metal transporters from the metal-tolerant strain Zn of the ericoid mycorrhizal fungus Oidiodendron maius, confer zinc tolerance in yeast[J]. Fungal Genetics and Biology, 2013,52(3): 53—64.[34] Khouja H R, Daghino S, Abbà S, Boutaraa F, Chalot M, Blaudez D, Martino E, Perotto S. OmGOGAT-disruption in the ericoid mycorrhizal fungus Oidiodendron maius induces reorganization of the N pathway and reduces tolerance to heavy-metals[J]. Fungal Genetics and Biology, 2014,71: 1—8.[35] 苗丽芬. 蓝莓的栽培技术及病害研究[J]. 林业科技情报, 2012(2): 34—36.[36] Usuki F, Narisawa K. Formation of structures resembling ericoid mycorrhizas by the root endophytic fungus Heteroconium chaetospira within roots of Rhododendron obtusum var. kaempferi[J]. Mycorrhiza, 2005,15(1): 61—64.[37] Mandyam K, Jumpponen A. Seeking the elusive function of the root-colonising dark septate endophytic fungi[J]. Studies in Mycology. 2005,53(1): 173—189.[38] Massicotte H B, Melville L H, Peterson R L. Structural characteristics of root-fungal interactions for five ericaceous species in eastern Canada[J]. Canadian Journal of Botany, 2005,83(8): 1057—1064.[39] Sterkenburg E, Bahr A, Durling M B, Clemmensen K E, Lindahl B D. Changes in fungal communities along a boreal forest soil fertility gradient[J]. New Phytologist, 2015,207(4): 1145—1158.[40] Tedersoo L, Bahram M, Polme S. Global diversity and geography of soil fungi[J]. Science, 2014,346(6213): 1—11.[41] Mayerhofer M S, Fraser E, Kernaghan G. Acid protease production in fungal root endophytes[J]. Mycologia, 2015,107(1): 1—11.[42] 陈雅彬,李永强,孙琳,沈妍雯,陈文荣,刘霞,郭卫东. 非酸性根际土壤对蓝莓铁元素吸收及其代谢相关基因表达的影响[J]. 园艺学报, 2015(2): 233—242.[43] Liu X M, Xu Q L, Li Q Q, Zhang H, Xiao J X. Physiological responses of the two blueberry cultivars to inoculation with an arbuscular mycorrhizal fungus under low-temperature stress[J]. Journal of Plant Nutrition, 2017,40(18): 2562—2570.[44] Smith S E, Read D J. Mycorrhizal Symbiosis[M]. London: Elsevier, 2008.[45] 王晓燕,彭礼琼,金则新. 模拟增温条件下接种AMF对夏蜡梅幼苗生长与光合生理特性的影响[J]. 生态学报, 2016,36(16): 5204—5214.[46] Schü?ler A, Walker C. The Glomeromycota: a species list with new families and new genera[DB/OL]. www. amf-phylogeny.com. 2010-12-16. |