[1] 张雯丽, 李想, 李淞淋. 中国花生供需现状及未来10年展望[J]. 农业展望, 2015, 11(9): 7–11.
[2] 张立伟, 王辽卫. 我国花生产业发展状况、存在问题及政策建议[J]. 中国油脂, 2020, 45(11): 116–122.
[3] Leal-Bertioli S C M, Nascimento E, Chavarro M C F, Custodio A R, Hopkins M S, Moretzsohn M C, Bertioli D J, Araujo A C G. Spontaneous generation of diversity in Arachis neopolyploids (Arachis ipaensis × Arachis duranensis) 4x replays the early stages of peanut evolution [J]. G3: Genes, Genomes, Genetics, 2021, 11(11):289–289.
[4] Liu H, Hu D, Du P, Wang L, Liang X, Li H, Lu Q, Li S, Liu H, Chen X, Varshney R K, Hong Y. Single-cell RNA-seq describes the transcriptome landscape and identifies critical transcription factors in the leaf blade of the allotetraploid peanut (Arachis hypogaea L.) [J]. Plant Biotechnol J, 2021, 19(11): 2261–2276.
[5] He G H, Prakash C S. Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.) [J]. Euphytica, 1997, 97(2): 143–149.
[6] Herselman L, Thwaites R, Kimmins F M, Courtois B, Van Der Merwe P J, Seal S E. Identification and mapping of AFLP markers linked to peanut (Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease [J]. Theoretical and Applied Genetics, 2004, 109(7): 1426–1433.
[7] Ren X, Jiang H, Yan Z, Chen Y, Zhou X, Huang L, Lei Y, Huang J, Yan L, Qi Y, Wei W, Liao B. Genetic diversity and population structure of the major peanut (Arachis hypogaea L.) cultivars grown in China by SSR markers [J]. Public Library of Science One, 2014, 9(2): 88–91.
[8] Zhao S, Li A, Li C, Xia H, Zhao C, Zhang Y, Hou L, Wang X. Development and application of KASP marker for high throughput detection of AhFAD2 mutation in peanut [J]. Electronic Journal of Biotechnology, 2017, 25: 9–12.
[9] Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli S C M, Ren L, Farmer A D, Pandey M K, Samoluk S S, Abernathy B, Agarwal G, Ballen-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, El Baidouri M, Guo B, Huang W, Kim K D, Korani W, Lanciano S, Lui C G, Mirouze M, Moretzsohn M C, Pham M, Shin J H, Shirasawa K, Sinharoy S, Sreedasyam A, Weeks N T, Zhang X, Zheng Z, Sun Z, Froenicke L, Aiden E L, Michelmore R, Varshney R K, Holbrook C C, Cannon E K S, Scheffler B E, Grimwood J, Ozias-Akins P, Cannon S B, Jackson S A, Schmutz J. The genome sequence of segmental allotetraploid peanut Arachis hypogaea [J]. Nature Genetics, 2019, 51(5): 877–884.
[10] Zhuang W, Chen H, Yang M, Wang J, Pandey M K, Zhang C, Chang W C, Zhang L, Zhang X, Tang R, Garg V, Wang X, Tang H, Chow C N, Wang J, Deng Y, Wang D, Khan A W, Yang Q, Cai T, Bajaj P, Wu K, Guo B, Zhang X, Li J, Liang F, Hu J, Liao B, Liu S, Chitikineni A, Yan H, Zheng Y, Shan S, Liu Q, Xie D, Wang Z, Khan S A, Ali N, Zhao C, Li X, Luo Z, Zhang S, Zhuang R, Peng Z, Wang S, Mamadou G, Zhuang Y, Zhao Z, Yu W, Xiong F, Quan W, Yuan M, Li Y, Zou H, Xia H, Zha L, Fan J, Yu J, Xie W, Yuan J, Chen K, Zhao S, Chu W, Chen Y, Sun P, Meng F, Zhuo T, Zhao Y, Li C, He G, Zhao Y, Wang C, Kavikishor P B, Pan R L, Paterson A H, Wang X, Ming R, Varshney R K. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication [J]. Nature Genetics, 2019, 51(5): 865–876.
[11] Sharma K K, Anjaia V. An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation [J]. Plant Science, 2000, 159(1): 7–19.
[12] Singsit C, Adang M J, Lynch R E, Anderson W F, Wang A, Cardineau G, Ozias-Akins P. Expression of a Bacillus thuringiensis cryIA(c) gene in transgenic peanut plants and its efficacy against lesser cornstalk borer [J]. Transgenic Research, 1997, 6(2): 169–76.
[13] Chu Y, Deng X Y, Faustinelli P, Ozias-Akins P. Bcl-xL transformed peanut (Arachis hypogaea L.) exhibits paraquat tolerance [J]. Plant Cell Reports, 2008, 27(1): 85–92.
[14] Tiwari S, Mishra D K, Singh A, Singh P K, Tuli R. Expression of a synthetic cry1EC gene for resistance against Spodoptera litura in transgenic peanut (Arachis hypogaea L.) [J]. Plant Cell Reports, 2008, 27(6): 1017–1025.
[15] Sinharoy S, Saha S, Chaudhury S R, Dasgupta M. Transformed hairy roots of Arachis hypogea: a tool for studying root nodule symbiosis in a non-infection thread legume of the Aeschynomeneae tribe [J]. Molecular Plant-Microbe Interactions, 2009, 22(2): 132–142.
[16] Chu Y, Guimaraes L A, Wu C L, Timper P, Holbrook C C, Ozias-Akins P. A technique to study Meloidogyne arenaria resistance in Agrobacterium rhizogenes–transformed peanut [J]. Plant Disease, 2014, 98(10): 1292–1299.
[17] Guimaraes L A, Pereira B M, Araujo A C G, Guimaraes P M, Brasileiro A C M. Ex vitro hairy root induction in detached peanut leaves for plant-nematode interaction studies [J]. Plant Methods, 2017, 13(1): 25–35.
[18] Liu S, Su L, Liu S, Zeng X, Zheng D, Hong L, Li L. Agrobacterium rhizogenes–mediated transformation of Arachis hypogaea: an efficient tool for functional study of genes [J]. Biotechnology & Biotechnological Equipment, 2016, 30(5): 869–878.
[19] Nanjareddy K, Zepeda-Jazo I, Arthikala M K. A protocol for the generation of Arachis hypogaea composite plants: A valuable tool for the functional study of mycorrhizal symbiosis [J]. Applications in Plant Sciences, 2022, 10(1): 1–10.
[20] 乔利仙, 孙海燕, 隋炯明, 徐丽娟, 孙世孟, 王晶珊. 花生与其近缘野生种间细胞融合及杂种愈伤组织的形成[J]. 中国农学通报, 2012, 28(33): 71–74.
[21] 李婧瑶, 刘龙飚, 丁兵, 杨海昕, 吴琼, 张旸. 植物原生质体分离及培养研究进展[J]. 分子植物育种, 2023, 21(2): 620–632.
[22] Hillmer S G S, Jones R L. Visualizing enzyme secretion from Individual Barley (Hordeum vulgare) aleurone protoplasts [J]. Plant Physiology, 1993, 102(1): 279–286.
[23] Carlson P S, Smith H H, Dearing R D. Parasexual interspecific plant hybridization[J]. Proceedings of the National Academy of Sciences, 1972, 69(8): 2292–2294.
[24] 王姿童, 宋悦悦, 刘林, 薛佳丽, 詹亚光, 齐凤慧. 水曲柳原生质体分离初探[J]. 生物技术, 2021, 31(2): 183–188.
[25] 赖叶林, 贺莹, 李欣欣, 廖红. 一种植物原生质体分离与瞬时转化的方法[J]. 植物生理学报, 2020, 56(4): 895–903.
[26] Klercker I A F. Eine methode zur isolierung lebender protoplasten [J]. Ofvers Vetensk Akad Forh (Stockholm), 1892, 9: 463–475.
[27] Cocking E C. A method for the isolation of plant protoplasts and vacuoles [J]. Nature, 1960, 187(4741): 962–963.
[28] Oelck M M, Bapat V A, Schieder O. Protoplast culture of three legumes: Arachis hypogaea, Melilotus officinalis, Trifolium respinatum[J]. Zeitschrift für Pflanzenphysiologie, 1982, 106: 173–177.
[29] Rugrnan E E, Cocking E C. The development of somatic hybridization technique for groundnut improvement [J]. Cytogenetics of Arachis, 1983, 31: 167–174.
[30] Biswas S, Wahl N J, Thomson M J, Cason J M, Mccutchen B F, Septiningsih E M. Optimization of protoplast isolation and transformation for a pilot study of genome editing in peanut by targeting the allergen gene Ara h 2 [J]. International Journal of Molecular Sciences, 2022, 23(2): 837–850.
[31] Wang J, Wang Y, Lu T, Yang X, Liu J, Dong Y, Wang Y. An efficient and universal protoplast isolation protocol suitable for transient gene expression analysis and single-cell RNA sequencing [J]. International Journal of Molecular Sciences, 2022, 23(7): 3419–3430.
[32] Biswas S, Bridgeland A, Irum S, Thomson M J, Septiningsih E M. Optimization of prime editing in rice, peanut, chickpea, and cowpea protoplasts by restoration of GFP activity [J]. International Journal of Molecular Sciences, 2022, 23(17): 9809–9822.
|