[1] Johnson J D. Do carotenoids serve as transmembrane radical channels [J]. Free Radical Biology & Medicine, 2009, 47(3): 321–323.
[2] Watkins J L, Pogson B J. Prospects for carotenoid biofortification targeting retention and catabolism [J]. Trends in Plant Science, 2019, 25(5): 501–512.
[3] Lu S, Li L. Carotenoid metabolism: biosynthesis, regulation, and beyond [J]. Journal of Integrative Plant Biology, 2008, 50(7): 778–785.
[4] Quian-Ulloa R, Stange C. Carotenoid biosynthesis and plastid development in plants: the role of light [J]. International Journal of Molecular Sciences, 2021, 22(3): 1184.
[5] 王曼曼, 薛舒丹, 吴廷全, 罗少波, 谢大森, 钟玉娟. 光照和温度调控对番茄果实中类胡萝卜素合成的影响[J]. 分子植物育种, 2020, 18(18): 6158–6164.
[6] Shi H, Wang X, Mo X, Tang C, Zhong S, Deng X W. Arabidopsis DET1 degrades HFR1 but stabilizes PIF1 to precisely regulate seed germination [J]. Proceedings of the National Academy of Sciences of the United States of America , 2015, 112(12): 3817–3822.
[7] Bou-Torrent J, Toledo-Ortiz G, Ortiz-Alcaide M, Cifuentes- Esquivel N, Halliday K J, Martinez-García J F, Rodriguez- Concepcion M. Regulation of carotenoid biosynthesis by shade relies on specific subsets of antagonistic transcription factors and cofactors [J]. Plant Physiology, 2015, 169(3): 1584–1594.
[8] Rodriguez-Concepcion M. Supply of precursors for carotenoid biosynthesis in plants [J]. Archives of Biochemistry and Biophysics, 2010, 504(1): 118–122.
[9] Mannen K, Matsumoto T, Takahashi S, Yamaguchi Y, Tsukagoshi M, Sano R, Suzuki H, Sakurai N, Shibata D, Koyama T, Nakayama T. Coordinated transcriptional regulation of isopentenyl diphosphate biosynthetic pathway enzymes in plastids by phytochrome-interacting factor 5 [J]. Biochemical and Biophysical Research Communications, 2014, 443(2): 768–774.
[10] Bianchetti R, De Luca B, de Haro L A, Rosado D, Demarco D, Conte M, Bermudez L, Freschi L, Fernie A R, Michaelson L V, Haslam R P, Rossi M, Carrari F. Phytochrome-dependent temperature perception modulates isoprenoid metabolism [J]. Plant Physiology, 2020, 183(3): 869–882.
[11] Toledo-Ortiz G, Huq E, Rodriguez-Concepcion M. Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(25): 11626–11631.
[12] Catala R, Medina J, Salinas J. Integration of low temperature and light signaling during cold acclimation response in Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(39): 16475–16480.
[13] Toledo-Ortiz G, Johansson H, Lee K P, Bou-Torrent J, Stewart K, Steel G, Rodríguez-Concepción M, Halliday K J. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription [J]. PLoS Genetics, 2014, 10(6): e1004416.
[14] Li F, Vallabhaneni R, Yu J, Rocheford T, Wurtzel E T. The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm, photomorphogenesis, and thermal stress tolerance [J]. Plant Physiology, 2008, 147(3), 1334–1346.
[15] Lu S, Zhang Y, Zhu K, Yang W, Ye J, Chai L, Xu Q, Deng X. The citrus transcription factor CsMADS6 modulates carotenoid metabolism by directly regulating carotenogenic genes [J]. Plant Physiology, 2018, 176(4): 2657–2676.
[16] Sun Q, He Z, Wei R, Yin Y, Ye J, Chai L, Xie Z, Guo W, Xu J, Cheng Y, Xu Q, Deng X. Transcription factor CsTT8 promotes fruit coloration by positively regulating the methylerythritol 4-phosphate pathway and carotenoid biosynthesis pathway in citrus (Citrus spp.) [J]. Horticulture Research, 2023, 10(11): uhad199.
[17] Ren S, Yuan Y, Wang H, Zhang Y. G2-Like Carotenoid Regulator (SlGCR) is a positive regulator of lutein biosynthesis in tomato [J]. aBIOTECH, 2022, 3(4): 267–280.
[18] Zhu F, Luo T, Liu C, Wang Y, Yang H, Yang W, Zheng L, Xiao X, Zhang M, Xu R, Xu J, Zeng Y, Xu J, Xu Q, Guo W, Larkin R M, Deng X, Cheng Y. An R2R3-MYB transcription factor represses the transformation of α- and β-branch carotenoids by negatively regulating expression of CrBCH2 and CrNCED5 in flavedo of Citrus reticulata [J]. The New Phytologist, 2017, 216(1): 178–192.
[19] Dang Z, Zhu M, Chen H, Zhang Y, Gao A, Ma W, Chen Y, Wei Y, Zhang H. MiMYB10 transcription factor regulates biosynthesis and accumulation of carotenoid involved genes in mango fruit [J]. International Journal of Biological Macromolecules, 2023, 253(8): 127665.
[20] Meng Y, Wang Z, Wang Y, Wang C, Zhu B, Liu H, Ji W, Wen J, Chu C, Tadege M, Niu L, Lin H. The MYB activator WHITE PETAL1 associates with MtTT8 and MtWD40-1 to regulate carotenoid-derived flower pigmentation in Medicago truncatula [J]. The Plant Cell, 2019, 31(11): 2751–2767.
[21] Stanley LE, Ding B, Sun W, Mou F, Hill C, Chen S, Yuan YW. A tetratricopeptide repeat protein regulates carotenoid biosynthesis and chromoplast development in monkeyflowers (Mimulus) [J]. The Plant Cell, 2020, 32(5):1536–1555.
[22] Sagawa J M, Stanley L E, Lafountain A M, Frank H A, Liu C, Yuan Y W. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers [J]. The New Phytologist, 2016, 209(3): 1049–1057.
[23] Li L, Lu S, Cosman K M, Earle E D, Garvin D F, O'Neill J. β-Carotene accumulation induced by the cauliflower or gene is not due to an increased capacity of biosynthesis [J]. Phytochemistry, 2006, 67(12): 1177–1184.
[24] Sun T, Yuan H, Cao H, Yazdani M, Tadmor Y, Li L. Carotenoid metabolism in plants: the role of plastids [J]. Molecular Plant, 2018, 11(1): 58–74.
[25] Li L, Yuan H, Zeng Y, Xu Q. Plastids and carotenoid accumulation [J]. Sub-cellular Biochemistry, 2016, 79: 273–293.
[26] Janick-Buckner D, Hammock D J, Johnson J M, Osborn J M, Buckner B. Biochemical and ultrastructural analysis of the y10 mutant of maize [J]. Journal of Heredity, 1999, 90(5): 507–513.
[27] Howitt C A, Pogson B J. Carotenoid accumulation and function in seeds and non-green tissues [J]. Plant Cell & Environment, 2006, 29(3): 435–445.
[28] Li L, Yuan H. Chromoplast biogenesis and carotenoid accumulation [J]. Archives of Biochemistry and Biophysics, 2013, 539(2):102–109.
[29] Lado J, Zacarías L, Gurrea A, Page A, Stead A, Rodrigo M J. Exploring the diversity in Citrus fruit colouration to decipher the relationship between plastid ultrastructure and carotenoid composition [J]. Planta, 2015, 242(3): 645–661.
[30] Egea I, Barsan C, Bian W, Purgatto E, Latché A, Chervin C, Bouzayen M, Pech J C. Chromoplast differentiation: current status and perspectives [J]. Plant and Cell Physiology, 2010, 51(10): 1601–1611.
[31] Lopez-Juez E, Pyke K A. Plastids unleashed: their development and their integration in plant development [J]. The International Journal of Developmental Biology, 2005, 49(5–6): 557–577.
[32] Schaeffer S M, Christian R, Castro-Velasquez N, Hyden B, Lynch-Holm V, Dhingra A. Comparative ultrastructure of fruit plastids in three genetically diverse genotypes of apple (Malus x domestica Borkh.) during development [J]. Plant Cell Reports, 2017, 36(10): 1627–1640.
[33] Egea I, Bian W, Barsan C, Jauneau A, Pech J C, Latché A, Li Z, Chervin C. Chloroplast to chromoplast transition in tomato fruit: spectral confocal microscopy analyses of carotenoids and chlorophylls in isolated plastids and time–lapse recording on intact live tissue [J]. Annals of Botany, 2011, 108(2): 291–297.
[34] Ben-Shaul Y, Klein S. Development and structure of carotene bodies in carrot roots [J]. Botanical Gazette, 1965, 126(2): 79–85.
[35] Caiola M G, Canini A. Ultrastructure of chromoplasts and other plastids in Crocus sativus L. (Iridaceae) [J]. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 2004, 138(1): 43–52.
[36] Horner H T, Healy R A, Ren G, Fritz D, Klyne A, Seames C, Thornburg R W. Amyloplast to chromoplast conversion in developing ornamental tobacco floral nectaries provides sugar for nectar and antioxidants for protection [J]. American Journal of Botany, 2007, 94(1): 12–24.
[37] 申慧敏, 史俐莎, 田清尹, 刘家伟, 王良桂, 岳远征. ABC转运蛋白在植物花器官生长发育中的研究进展[J]. 西北植物学报, 2021, 41(11): 1975–1982.
[38] Jasiński M, Stukkens Y, Degand H, Purnelle B, Marchand– Brynaert J, Boutry M. A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion [J]. The Plant Cell, 2001, 13(5): 1095–1107.
[39] Van Den Brule S, Muller A, Fleming A J, Smart C C. The ABC transporter SpTUR2 confers resistance to the antifungal diterpene sclareol [J]. Plant Journal, 2002, 30(6): 649–662.
[40] 付雪晴. 青蒿倍半萜转运蛋白的筛选和功能鉴定[D]. 上海: 上海交通大学博士学位论文, 2019.
[41] Yu F, De Luca V. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(39): 15830–15835.
[42] Shoji T, Inai K, Yazaki Y, Sato Y, Takase H, Shitan N, Yazaki K, Goto Y, Toyooka K, Matsuoka K, Hashimoto T. Multidrug and toxic compound extrusion-type transporters implicated in vacuolar sequestration of nicotine in tobacco roots [J]. Plant Physiology, 2009, 149(2): 708–718.
[43] Zhao J, Huhman D, Shadle G, He X Z, Sumner L W, Tang Y, Dixon R A. MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula [J]. The Plant Cell, 2011, 23(4): 1536–1555.
[44] Zhong Y, Xun W, Wang X, Tian S, Zhang Y, Li D, Zhou Y, Qin Y, Zhang B, Zhao G, Cheng X, Liu Y, Chen H, Li L, Osbourn A, Lucas W J, Huang S, Ma Y, Shang Y. Root-secreted bitter triterpene modulates the rhizosphere microbiota to improve plant fitness [J]. Nature Plants, 2022, 8(8): 887–896.
[45] Payne R M, Xu D, Foureau E, Teto Carqueijeiro MI, Oudin A, Bernonville T D, Novak V, Burow M, Olsen C E, Jones D M, Tatsis E C, Pendle A, Ann Halkier B, Geu-Flores F, Courdavault V, Nour-Eldin H H, O'Connor S E. An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole [J]. Nature Plants, 2017, 3: 16208.
[46] Tal I, Zhang Y, Jorgensen M E, Pisanty O, Barbosa I C, Zourelidou M, Regnault T, Crocoll C, Olsen C E, Weinstain R, Schwechheimer C, Halkier B A, Nour-Eldin H H, Estelle M, Shani E. The Arabidopsis NPF3 protein is a GA transporter [J]. Nature Communications, 2016, 7: 11486.
[47] Kanno Y, Hanada A, Chiba Y, Ichikawa T, Nakazawa M, Matsui M, Koshiba T, Kamiya Y, Seo M. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(24): 9653–9658.
[48] David L C, Berquin P, Kanno Y, Seo M, Daniel-Vedele F, Ferrario-Méry S. N availability modulates the role of NPF3.1, a gibberellin transporter, in GA-mediated phenotypes in Arabidopsis [J]. Planta, 2016, 244(6): 1315–1328.
|