[1] 李斌, 郑勇奇, 林富荣, 郝跃松, 张永嫦, 刘建军, 武建宏, 李成涛, 孙君策. 黄连木种质资源及其遗传变异与繁育研究概述[J]. 湖南林业科技, 2016, 43(4): 97–100.
[2] 龙雪蓉, 贾黎明, 蒋晓辉, 白倩, 苏淑钗. 中国黄连木Pistacia chinensis Bunge资源价值及其开发利用前景[J/OL]. 中国油脂, 2023: 1–11. https://www.cnki.com.cn/Article/CJFDTotal-ZYZZ 20230823004.htm
[3] 段劼, 陈婧, 马履一, 贾黎明, 杨腾. 木本油料树种中国黄连木研究进展[J]. 中国农业大学学报, 2012, 17(6): 171–177.
[4] 李广会. 黄连木的种质资源与开发利用[J]. 天津农业科学, 2009, 15(6): 68–70.
[5] 柳建军, 许立松, 王菁菁, 刘锡葵. 黄连木嫩叶抗氧化活性研究[J]. 食品科学, 2008(9): 45–47.
[6] 秦飞, 郭同斌, 刘忠刚, 宋明辉. 中国黄连木研究综述[J]. 经济林研究, 2007(4): 90–96.
[7] 侯新村, 左海涛, 牟洪香. 能源植物黄连木在我国的地理分布规律[J]. 生态环境学报, 2010, 19(5): 1160–1164.
[8] 李良厚, 肖志红, 张爱华, 李昌珠. Fe/C-SO3H中空纤维催化黄连木油制备生物柴油[J]. 科学技术与工程, 2019, 19(28): 264–269.
[9] 符瑜, 潘学标, 高浩. 中国黄连木的地理分布与生境气候特征分析[J]. 中国农业气象, 2009, 30(3): 318–322.
[10] 任重, 白倩, 苏淑钗. 基于SSR分子标记的中国黄连木遗传多样性分析[J]. 西北植物学报, 2022, 42(9): 1530–1539.
[11] 李娟娟, 邓伟, 许泽楠, 张子君, 路丙社. 黄连木多倍体诱导及鉴定[J]. 东北林业大学学报, 2022, 50(10): 18–22.
[12] 许泽楠. 不同种源黄连木生物学特性及染色体核型分析[D]. 保定: 河北农业大学硕士学位论文, 2021.
[13] Palmer W, Jacygrad E, Sagayaradj S, Cavanaugh K, Han R K, Bertier L, Beede B, Kafkas S, Golino D, Preece J, Michelmore R, Pearce S. Genome assembly and association tests identify interacting loci associated with vigor, precocity, and sex in interspecific pistachio rootstocks [J]. G3: Genes, Genomes, Genetics, 2023, 13(2): 1. Doi: 10.1093/g3journal/jkac317.
[14] Kafkas S, Ma X, Zhang X T, Topcu H, Navajas P R, Wai C M, Tang H, Xu X M, Khodaeiaminjan M, Guney M, Paizila A, Karci H, Zhang X D, Lin J, Lin H, Herran R, Rejon C R, Garcia–Zea J A, Robles F, Munoz C D V, Hotz–Wagenblatt A, Min X J, Ozkan H, Motalebipour E Z, Gozel H, Coban N, Kafkas N E, Kilian A, Huang H, Lv X, Liu K, Hu Q, Jacygrad E, Palmer W, Michelmore R, Ming R. Pistachio genomes provide insights into nut tree domestication and ZW sex chromosome evolution[J]. Plant Communications, 2023, 4(3): 100497.
[15] Xu J H, Zhang D X, Sun K, Wang XR, Xiang Q H, Wang Q, Guan W B. The complete chloroplast genome sequences of Pistacia chinensis Bunge, a potential bioenergy tree [J]. Mitochondrial DNA Part B, 2019, 4(1): 1774–1775.
[16] 丁淑金, 原晓龙, 耿云芬, 王毅, 张汉尧. 阿丁枫全基因组Survey分析[J/OL]. 分子植物育种, 2023: 1–11. https://kns. cnki.net/kcms2/detail/46.1068.S.20230602.1535.017.html.
[17] Soltis D E, Soltis P S, Bennett M D, Leitch I J. Evolution of genome size in the angiosperms [J]. American Journal of Botany, 2003, 90(11): 1596–603.
[18] 伍艳芳, 肖复明, 徐海宁, 章挺, 江香梅. 樟树全基因组调查[J]. 植物遗传资源学报, 2014, 15(1): 149–152.
[19] 张云燕, 安宇, 林峰, 马秋月. 基于流式细胞术和K-mer分析的银缕梅属Parrotia C. A. Mey.植物基因组大小测定[J]. 植物遗传资源学报, 2021, 22(2): 561–570.
[20] Tgagi A, Sandhya, Sharma P, Saxena S, Sharma R, Mithra A, Solanke A U, Singh N K, Sharma T R, Gaikwad K. The genome size of clusterbean (Cyamopsis tetragonoloba) is significantly smaller compared to its wild relatives as estimated by flow cytometry [J]. Gene, 2019, 707: 205–211.
[21] 金亮, 徐伟韦, 李小白, 刘建新, 田丹青. DNA流式细胞术在植物遗传及育种中的应用[J]. 中国细胞生物学学报, 2016, 38(2): 225–234.
[22] Huang S, Li R, Zhang Z. The genome of the cucumber, Cucumis sativus L.[J]. Nature Genetics, 2009, 41(12): 1275–1281.
[23] Dolezel J, Bartos J. Plant DNA flow cytometry and estimation of nuclear genome size [J]. Annals of Botany, 2005, 95(1): 99–110.
[24] 吴方圆, 蔡娅, 郝丙青, 贾艳霞, 叶航. 流式细胞仪检测香花油茶、越南油茶基因组大小方法的建立及应用[J]. 热带作物学报, 2023, 44(8): 1542–1550.
[25] Shen W, Ren H. TaxonKit: A practical and efficient NCBI taxonomy toolkit [J]. Journal of Genetics and Genomics, 2021, 48(9): 844–850.
[26] 黄阿晶, 周佳熠, 李天泽, 邢怡德, 高飞. 基于流式细胞术和K-mer分析的苦豆子基因组大小估测[J]. 中草药, 2019, 50(24): 6098–6102.
[27] The Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution [J]. Nature, 2012, 485(7400): 635–41.
[28] The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J]. Nature, 2000, 408(6814): 796–815.
[29] 杨跃仙, 段利武, 马山俊, 曾昭朝, 原晓龙. 短柄草基因组调查测序[J/OL]. 分子植物育种, 2024: 1–11. https://kns.cnki. net/kcms/detail/46.1068.S.20230506.1022.008.html
[30] 张小燕, 刘志香, 廖保生, 肖水明, 徐江. 基于本草基因组学应用流式细胞术和高通量测序技术检测人参基因组大小[J]. 世界科学技术–中医药现代化, 2017, 19(10): 1724–1728.
[31] Bai G, Chen C, Zhao C, Zhou T, Li D, Zhou T, Li W, Lu Y, Cong X, Jia Y, Li S. The chromosome-level genome for Toxicodendron vernicifluum provides crucial insights into Anacardiaceae evolution and urushiol biosynthesis [J]. iScience, 2022, 25(7): 104512.
[32] Ni B B, Liu H, Wang Z S, Zhang G Y, Sang Z Y, Liu J J, He C Y, Zhang J G. A chromosome-scale genome of Rhus chinensis Mill. provides new insights into plant–insect interaction and gallotannins biosynthesis [J]. The Plant Journal, 2024(3): 766–786.
[33] Wang P, Luo Y, Huang J,Gao S H, Zhu G P, Dang Z G, Gai J T. The genome evolution and domestication of tropical fruit mango [J]. Genome Biololgy, 2020, 21(1): 60.
[34] Consortium M G, Bally I S E, Bombarely A, Chambers A H, Cohen Y, Dillon N L, Innes D J, Islas-Osuna M A, Kuhn D N, Mueller L A, Ophir R, Rambani A, Sherman A, Yan H. The 'Tommy Atkins' mango genome reveals candidate genes for fruit quality [J]. BMC Plant Biology, 2021, 21(1): 108.
[35] Ma X W, Luo X, Wei YZ, Bai T H, Shi J L, Zheng B, Xu W T, Li L, Wang S B, Zhang J S, Wu H X. Chromosome-scale genome and comparative transcriptomic analysis reveal transcriptional regulators of beta-carotene biosynthesis in Mango [J]. Frontiers in Plant Science, 2021, 12: 749108.
[36] Chang Y, Liu H, Liu M, Liao X, Sahu S K, Fu Y, Song B, Cheng S F, Kariba R, Muthemba S, Hendre P S, Mayes S, Ho W K, Yssel A E J, Kendabie P, Wang S, Li L, Muchugi A, Jamnadass R, Lu H, Peng S, Deynze A V, Simons A, Yana-Shapiro H, Peer Y V D, Xu X, Yang H, Wang J, Liu, X. The draft genomes of five agriculturally important African orphan crops [J]. Gigascience, 2018, 8(3): 1–16.
[37] Savadi S, Muralidhara B M, Godwin J, Adiga J D, Mohana G, S, Eradasappa E, Shamsudheen M, Karun A. De novo assembly and characterization of the draft genome of the cashew (Anacardium occidentale L.) [J]. Scientific Reports, 2022, 12(1): 18187.
[38] Pirro T, Pirro S. The complete genome sequence of Toxicodendron radicans, Eastern Poison Ivy [J/OL]. F1000 Research, 2020. https://doi.org/10.12688/f1000research.25556.1.
[39] Edwards M A, Henry R J. DNA sequencing methods contributing to new directions in cereal research [J]. Journal of Cereal Science, 2011, 54(3): 395–400.
[40] Feuillet C, Leach J E, Rogers J, Schnable P S, Eversole K. Crop genome sequencing: lessons and rationales [J]. Trends in Plant Science, 2011, 16(2): 77–88.
[41] Zeng L, Tu X L, Dai H, Han F M, Lu B S,Wang M S, Nanaei H A, Tajabadipour A, Mansouri M, Li X L, Ji L L, Irwin D M, Zhou H, Liu M, Zheng H K, Esmailizadeh A, Wu D D. Whole genomes and transcriptomes reveal adaptation and domestication of pistachio [J]. Genome Biology, 2019, 20(1): 79.
|