[1] Pridgeon A M, Cribb P J, Chase M C, Rasmussen F N. Epidendroideae (Part 2): Genera Orchidacearum [M]. Oxford: Oxford University Press, 2009, 5: 1–585.
[2] Rafinesque C S. Flora Telluriana [M]. Philadelphia: H. Probasco, 1838: 135.
[3] Swartz O P. Kongl [J]. VetenskapsAcademiens Nya Handlingar, 1800, 2(21): 239–240.
[4] Lückel E, Braem G J. Psychopsis und Psychopsiella: Eine alte und eine neue Gattung der Oncidium-Verwandtschaft [J]. Die Orchidee, 1982, 33(1): 1–7.
[5] Neubig K M, Whitten W M, Williams N H, Blanco M A, Endara L, Burleigh J G, Silvera K, Cushman J C, Chase M W. Generic recircumscriptions of Oncidiinae (Orchidaceae: Cymbidieae) based on maximum likelihood analysis of combined DNA datasets [J]. Botanical Journal of the Linnean Society, 2012, 168(2): 117–146.
[6] Givnish T J, Spalink D, Ames M, Lyon S P, Hunter S J, Zuluaga A, Iles W J D, Clements M A, Arroyo M T K, Leebens-Mack J, Endara L, Kriebel R, Neubig K M, Whitten W M, Williams N H, Cameron K M. Orchid phylogenomics and multiple drivers of their extraordinary diversification [J]. Proceedings of the Royal Society B: Biological Sciences, 2015, 282(1814): 20151553.
[7] Li Y X, Li Z H, Schuiteman A, Chase M W, Li J W, Huang W C, Hidayat A, Wu S S, Jin X H. Phylogenomics of Orchidaceae based on plastid and mitochondrial genomes [J]. Molecular Phylogenetics and Evolution, 2019, 139: 106540.
[8] Niu Z T, Pan J J, Zhu S Y, Li L D, Xue Q Y, Liu W, Ding X Y. Comparative analysis of the complete plastomes of Apostasia wallichii and Neuwiedia singapureana (Apostasioideae) reveals different evolutionary dynamics of IR/SSC boundary among photosynthetic orchids [J]. Frontiers in Plant Science, 2017, 8: 1713.
[9] Delannoy E, Fujii S, Colas des Francs-Small C, Brundrett M, Small I. Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes [J]. Molecular Biology and Evolution, 2011, 28(7): 2077–2086.
[10] Allen G C, Flores-Vergara M A, Krasynanski S, Kumar S, Thompson W F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide [J]. Nature Protocols, 2006, 1(5): 2320–2325.
[11] Andrews S. FastQC: a quality control tool for high throughput sequence data [J]. Bioinformatics, 2010, 26(15): 1968–1971.
[12] Jian J J, Yu W B, Yang J B, Song Y, dePamphilis C W, Yi T S, Li D Z. GetOrganelle: a simple and fast pipeline for de novo assembly of a complete circular chloroplast genome using genome skimming data [J]. BioRxiv, 2018: 256479.
[13] Wick R R, Schultz M B, Zobel J, Holt K E. Bandage: interactive visualization of de novo genome assemblies [J]. Bioinformatics, 2015, 31(20): 3350–3352.
[14] Qu X J, Moore M J, Li D Z, Yi T S. PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes [J]. Plant Methods, 2019, 15: 1–12.
[15] Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Meintjes P, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data [J]. Bioinformatics, 2012, 28(12): 1647–1649.
[16] Greiner S, Lehwark P, Bock R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes [J]. Nucleic Acids Research, 2019, 47(W1): W59–W64.
[17] Beier S, Thiel T, Münch T, Scholz U, Mascher M. MISA–web: a web server for microsatellite prediction [J]. Bioinformatics, 2017, 33(16): 2583–2585.
[18] Amiryousefi A, Hyv?nen J, Poczai P. IRscope: an online program to visualize the junction sites of chloroplast genomes [J]. Bioinformatics, 2018, 34(17): 3030–3031.
[19] Brudno M, Malde S, Poliakov A, Do C B, Couronne O, Dubchak I, Batzoglou S. Glocal alignment: finding rearrangements during alignment [J]. Bioinformatics, 2003, 19(s1): i54–i62.
[20] Darling A C E, Mau B, Blattner F R, Perna N T. Mauve: multiple alignment of conserved genomic sequence with rearrangements [J]. Genome Research, 2004, 14(7): 1394–1403.
[21] Chase M W, Cameron K M, Freudestein J V, Pridgeon A M, Salazar G, Van den Berg C, Schuiteman A. An update classification of Orchidaceae [J]. Botanical Journal of the Linnean Society, 2015, 177(2): 151–174.
[22] Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform [J]. Nucleic Acids Research, 2002, 30(14): 3059–3066.
[23] Capella-Gutiérrez S, Silla-Martínez J M, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses [J]. Bioinformatics, 2009, 25(15): 1972–1973.
[24] Minh B Q, Schmidt H A, Chernomor O, Schrempf D, Woodhams M D, von Haeseler A, Lanfear R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era [J]. Molecular Biology and Evolution, 2020, 37(5): 1530–1534.
[25] Kalyaanamoorthy S, Minh B Q, Wong T K F, von Haeseler A, Jermiin L S. ModelFinder: fast model selection for accurate phylogenetic estimates [J]. Nature Methods, 2017, 14(6): 587–589.
[26] Kim Y K, Jo S, Cheon S H, Kwak M, Kim Y D, Kim K J. Plastome evolution and phylogeny of subtribe Aeridinae (Vandeae, Orchidaceae) [J]. Molecular Phylogenetics and Evolution, 2020, 144: 106721.
[27] Niu Z T, Zhu S Y, Pan J J, Li L D, Jing S, Ding X Y. Comparative analysis of Dendrobium plastomes and utility of plastomic mutational hotspots [J]. Scientific Reports, 2017, 7(1): 2073.
[28] Chen Y Q, Zhong H, Zhu Y T. Plastome structure and adaptive evolution of Calanthe s. l. species [J]. PeerJ, 2020, 8: e10051.
[29] Zavala-Páez M, Vieira L N, Baura V A, Balsanelli E, Souza E M, Cevallos M, Chase M W, Smidt E. Comparative plastid genomics of neotropical Bulbophyllum (Orchidaceae; Epidendroideae) [J]. Frontiers in Plant Science, 2020, 11: 799.
[30] Pan I C, Liao D C, Wu F H, Daniell H, Singh N D, Chang C, Shih M C, Chan M T, Lin C S. Complete chloroplast genome sequence of an orchid model plant candidate: Erycina pusilla apply in tropical Oncidium breeding [J]. PLoS One, 2012, 7(4): e34738.
[31] Kim H T, Kim J S, Moore M J, Neubig K M, Williams N H, Whitten W M, Kim J H. Seven new complete plastome sequences reveal rampant independent loss of the ndh gene family across orchids and associated instability of the inverted repeat/small single-copy region boundaries [J]. PLoS One, 2015, 10(11): e0142215.
[32] Qu X J, Zhang X J, Cao D L, Guo X X, Mower J P, Fan S J. Plastid and mitochondrial phylogenomics reveal correlated substitution rate variation in Koenigia (Polygonoideae, Polygonaceae) and a reduced plastome for Koenigia delicatula including loss of all ndh genes [J]. Molecular Phylogenetics and Evolution, 2022, 174: 107544.
[33] Ruhlman T A, Zhang J, Blazier J C, Saber J S M, Jansen R K. Recombination-dependent replication and gene conversion homogenize repeat sequences and diversify plastid genome structure [J]. American Journal of Botany, 2017, 104(4): 559–572.
[34] Zhou C Y, Lin W J, Li R Y, Wu Y H, Liu Z J, Li M H. Characterization of Angraecum (Angraecinae, Orchidaceae) plastomes and utility of sequence variability hotspots [J]. International Journal of Molecular Sciences, 2023, 25(1): 184.
[35] Gu C H, Ma L, Wu Z Q, Chen K, Wang Y X. Comparative analyses of chloroplast genomes from 22 Lythraceae species: inferences for phylogenetic relationships and genome evolution within Myrtales [J]. BMC Plant Biology, 2019, 19: 1–19.
[36] Thode V A, Lohmann L G. Comparative chloroplast genomics at low taxonomic levels: a case study using Amphilophium (Bignonieae, Bignoniaceae) [J]. Frontiers in Plant Science, 2019, 10: 796.
[37] Rokas A, Williams B L, King N, Carroll S B. Genome-scale approaches to resolving incongruence in molecular phylogenies [J]. Nature, 2003, 425(6960): 798–804.
|