[1] Dicke M, et al. Induced plant volatiles: from genes to climate change[J]. Trends in Plant Science, 2010,15(3): 1 150-1 157.[2] Curci G, et al. Friedrich Modelling study of the impact of isoprene and terpene biogenic emissions on European ozone levels[J]. Atmospheric Environment, 2009,43(7): 1 444-1 455.[3] Kansal A. Sources and reactivity of NMHCs and VOCs in the atmosphere: A review[J]. Journal of Hazardous Materials, 2009,166(1): 17-26.[4] Guenther A, et al. Estimates of global terrestrial isoprene emissions using MEGAN(Model of Emissions of Gases and Aerosols from Nature)[J]. Atmospheric Chemistry and Physics, 2006,6(11): 3181-3210.[5] Gavin D, et al. Development of an automated cylindrical ion trap mass spectrometer for determination of atmospheric volatile organic compounds[J]. Analytical Chemistry, 2007,79(13): 5 040-5 050.[6] Denman K, et al. Coupling between changes in the climate system and biogeochemistry, In: The Physical Science Basis Contribution of Working group I to the Fourth Assessment Report of the Intergovermental Panel on Climate Change[M].Cambridge University Press, Cambridge UK and New York USA, 2007: 501-568.[7] Karl T, et al. Rapid formation of isoprene photo-oxidation products observed in Amazonia[J]. Atmospheric Chemistry and Physics, 2009,9(3): 7 753-7 767.[8] Perring A, et al. A product study of the isoprene+NO3 reaction[J]. Atmospheric Chemistry and Physics Discussions, 2009,9(14): 5 231-5 261.[9] Leung D Y C, et al. Improved land cover and emission factors for modeling biogenic volatile organic compounds emissions from Hong Kong[J]. Atmospheric Environment, 2010,44(11): 1 456-1 468.[10] Young P J, et al. The CO2 inhibition of terrestrial isoprene emission signi?cantly affects future ozone projections[J]. Atmospheric Chemistry and Physics, 2009,9(8): 2 793-2 803.[11] Penuelas J, et al. BVOCs and global change[J]. Trends in Plant Science, 2009,15(3): 133-144.[12] Kiendler-Scharr A, et al. New particle formation in forests inhibited by isoprene emission[J]. Nature, 2009,461(17): 381-384.[13] Niinemets U. Mild versus severe stress and BVOCs: thresholds, priming and consequence[J]. Trends in Plant Science, 2010,15(3): 145-153.[14] Joshua S Y, et al. Smelling global climate change: mitigation of function for plant volatile organic compounds[J]. Trends in Ecology and Evolution, 2009,24(6): 323-331.[15] 司徒淑娉,等. 典型夏季珠江三角洲地区植被的异戊二烯排放[J]. 环境科学学报, 2009,29(4): 823-829.[16] 张玉洁,等. 北京市植物排放的异戊二烯对大气中甲醛的贡献[J]. 环境科学学报, 2009,30(4): 977-981.[17] Shi Y, et al. Emissions of isoprenoid from major planting tree species in Shenyang[J]. Advanced Materials Research, 2011,183(2): 1 041-1 045.[18] 白建辉,等. 草地异戊二烯排放通量影响因子的研究[J]. 大气科学, 2004,28(5): 783-794.[19] 白建辉,等. 热带人工橡胶林异戊二烯排放通量的模式研究[J]. 环境科学学报, 2004,24(2): 198-203.[20] 王效科,等. 太湖流域主要植物异戊二烯排放研究[J]. 植物学通报, 2002,19(2): 224-230.[21] 张莉,等. 中国森林生态系统的异戊二烯排放研究[J]. 环境科学, 2003,24(1): 9-15.[22] 赵静,等. 我国植物VOCs排放速率的研究[J]. 中国环境科学, 2004,24(6): 654-657.[23] Loreto F, et al. Emission of isoprene from salt-stressed Eucalyptus globulus leaves[J]. Plant Physiology, 2000,123(4): 1 605 -1 610.[24] Winters A J, et al. Emissions of isoprene, monoterpene and short-chained carbonyl compounds from Eucalyptus spp. in southern Australia[J]. Atmospheric Environment, 2009,43(19): 3 035-3 043.[25] 李宝福,等. 福建省尾叶桉的巨桉引种栽培区的气候区划[J]. 桉树科技, 1998,2: 37-41.[26] 戴锋,等. 福建师范大学旗山校区主要绿化植物的滞尘效应[J]. 福建林业科技, 2010,37(1): 53-58.[27] 陈颖,等. 沈阳市四种乔木树种BVOCs排放特征[J]. 生态学杂志, 2009,28(12): 2 410-2 416.[28] Guenther A B, et al. Isoprene and monoterpene emission rate variability: observations with Eucalyptus and emission rate algorithm development[J]. Journal of Geophysical Research, 1991,96(D6): 10 799-10 808.[29] Schurgers G, et al. Process-based modelling of biogenic monoterpene emissions: sensitivity to temperature and light Atmospheric[J]. Chemistry and Physics Discussions, 2009,9(1): 271-307.[30] Filella I, et al. Volatile organic compounds emissions in Norway spruce (Picea abies) in response to temperature changes[J]. Physiologia Plantarum, 2007,130(1): 58-66.[31] Steinbrecher R, et al. Intra-and inter- annual variability of VOC emissions from natural and semi-natural vegetation in Europe and neighbouring countries[J]. Atmospheric Environment, 2009,43(7): 1380-1391.[32] Siwko ME, et al. Does isoprene protect plant membranes from thermal shock? A molecular dynamics study[J]. Biochimica Biophysica Acta-biomembranes, 2007,1768(2): 198-206.[33] Richard D, et al. Do we need a new hypothesis to explain plant VOC emissions?[J]. Trends in Plant Science, 2006,11(3): 112-114.[34] 王永峰,等. 陆地生态系统植物挥发性有机化合物的排放及其生态学功能研究进展[J]. 植物生态学报, 2005,29(3): 487-496.[35] Juuti S, et al. Monoterpene emission rate measurements from a monterey pine[J]. Journal of Geophysical Research Atmospheres, 1990,95(D6): 7 515-7 519.[36] Kim J C. Factors controlling natural VOC emissions in a southeastern US pine forest[J]. Atmosphere Environment, 2001,35(19): 3 279-3 292.[37] 郄光发,等. 森林生物挥发性有机物释放速率研究进展[J]. 应用生态学报, 2005,16(06): 1 151-1 155. |