[1] 刘向蕾. 重金属对水稻生长发育影响的研究进展[J]. 现代化农业, 2007(2): 7—10.
[2] Williams C R, Harrison R M. Cadmium in the atmosphere[J]. Experientia, 1984,40: 29—36.
[3] 杨元根,刘丛强,吴攀,张国平. 贵州赫章土法炼锌导致的土壤重金属污染特征及微生物生态效应[J]. 地球化学, 2003,32(2): 131—139.
[4] Jung M C. Heavy metal contamination of soils and waters in and around the Imcheon Au-Ag mine, Korea[J]. Applied Geochemistry, 2001,16: 1369—1375.
[5] 陈芳,董元华,安琼,钦绳武. 长期肥料定位试验条件下土壤中重金属的含量变化[J]. 土壤, 2005,37(3): 308—311.
[6] 邵国胜,Muhammad J H,章秀福,张国平. 镉胁迫对不同水稻基因型植株生长和抗氧化酶系统的影响[J]. 中国水稻科学, 2004,18: 239—244.
[7] 肖美秀,林文雄,陈冬梅,梁康迳,柯庆明. 镉胁迫对耐性不同的水稻幼苗膜脂过氧化和保护酶活性的影响[J]. 中国生态农业学报, 2006,14(4): 256—258.
[8] 王琴儿,曾英. 镉毒害对水稻生理生态效应的研究进展[J]. 北方水稻, 2007(4): 12—16.
[9] 赵科理,刘杏梅,徐建明. 浙江省水稻产地环境镉污染分布及其风险评价[J]. 土壤通报, 2009,40(2): 394—399.
[10] Abe T, Fukami M, Ichizen N, Ogasawara M. Susceptibility of weed species to cadmium evaluated in a sand culture[J]. Weed Biology and Management, 2006,6: 107—114.
[11] Sultana R, Kobayashi K, Kim K H. Comparison of arsenic uptake ability of barnyard grass and rice species for arsenic phytoremediation[J]. Environmental Monitoring and Assessment, 2015,187(1): 4101.
[12] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
[13] Sanita di Toppi L, Gabbrielli R. Response to cadmium in higher plants[J]. Environmental and Experimental Botany, 1999,41: 105—130.
[14] Prasad M N V. Cadmium toxicity and tolerance in vascular plants[J]. Environmental and Experimental Botany, 1995,35(4): 525—545.
[15] 刘洋,胡芳杰,陈良华,杨万勤,张健. 3种土壤类型下红椿幼苗对铅胁迫的光合响应[J]. 西北植物学报, 2014,34(7): 1411—1418.
[16] Zhang X A, Wang Z H, Zhang X Q, Zuo J. Effect of heavy metals and saline-alkali on growth, physiology and biochemistry of Orychophragmus violaceus[J]. Agricultural Science & Technology, 2012,13: 1478—1483, 1508.
[17] 张义贤. 重金属对大麦(Hordeum vulgare)毒性的研究[J]. 环境科学学报, 1997,17(2): 199—206.
[18] 秦天才,吴玉树,王焕校. 镉、铅及其交互作用对小白菜生理生态效应的研究[J]. 生态学报, 1998,18(3): 320—328.
[19] 张玉秀,柴团耀. 植物重金属研究进展[J]. 植物学报, 1999,41(5): 453—457.
[20] Tomsett A B, Thurman D A. Molecular biology of metal tolerance of plants[J]. Plant, Cell & Environment, 1988,11: 383—394.
[21] 龚双姣,马陶武,姜业芳,陈军,刘应迪,李菁. 镉胁迫下3种藓类植物抗氧化酶活性变化的比较研究[J]. 西北植物学报, 2008,28(9): 1765—1771.
[22] Zhang F Q, Wang Y S, Lou Z P, Dong J D. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza)[J]. Chemosphere, 2007,67: 44—50.
[23] 林晓倩,张健,杨万勤,吴福忠,刘洋,生俊丹. 3种土壤类型下铅胁迫对巨桉幼苗的影响[J]. 林业科学, 2013,49(1): 1—6.
[24] 侯伶龙,黄荣,周丽蓉,陈文清,刘琛. 鱼腥草对土壤中镉的富集及根系微生物的促进作用[J]. 生态环境学报, 2010,19(4): 17—821.
[25] Cho U H, Seo N H. Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation[J]. Plant Science, 2005,168(1): 113—120.
[26] Chaoui A, Mazhoudi S, Ghorbal M H, Ferjani E E. Cadmium and Zn induction of lipid peroxidation and effects of antioxidant enzyme activities in bean(Phaseolus vulgaris L.)[J]. Plant Science, 1997,127: 139—147.
[27] 汤叶涛,关丽捷,仇荣亮,应蓉蓉,刘凤杰,胡鹏杰. 镉对超富集植物滇苦菜抗氧化系统的影响[J]. 生态学报, 2010,30(2): 324—332.
[28] 曾秀存,许耀照,张芬琴. 两种基因型龙葵对镉胁迫的生理响应及镉吸收差异[J]. 农业环境科学学报, 2012,31(5): 885—890.
[29] 李清飞,仇荣亮. 麻疯树对镉胁迫的生理耐性及富集特征研究[J]. 农业环境科学学报, 2012,31(1): 42—47.
[30] Li F T, Qi J M, Zhang G Y, Lin L H, Fang P P, Tao A F, Xu J T. Effect of cadmium stress on the growth, antioxidative enzymes and lipid peroxidation in two Kenaf (Hibiscus cannabinus L.) plant seedlings[J]. Journal of Integrative Agriculture, 2013,12: 610—620.
[31] Salin M L. Toxic oxygen species and protective systems of the chloroplast[J]. Physiologia Plant, 1988,72: 681—689.
[32] Foyer C H, Lelandais M, Kunert K J. Photooxidative stress in plants[J]. Physiologia Plant, 1994,92: 696—717.
[33] Sanita L, Gabbrielli R. Response to cadmium in higher plants[J]. Environmental and Experimental Botany, 1999,41: 105—130.
[34] 董萌,赵运林,雷存喜,周小梅,库文珍. 洞庭湖湿地Cd富集植物蒌蒿(Artemisia selengensis)的耐性生理机制研究[J]. 生态毒理学报, 2013,8(1): 111—120.
[35] 李蕾,云兴福. 内蒙古地区观光休闲农业园区景观规划设计的探讨[J]. 内蒙古农业科技, 2013(1): 98—101.
[36] 章秀福,王丹英,储开富,杨春刚,牟仁祥,陈铭学,朱智伟,何庆富,廖西元. 镉胁迫下水稻SOD活性和MDA含量的变化及其基因型差异[J]. 中国水稻科学, 2006,20(2): 194—198.
|