[1] Matsumoto H, Motoda H. Aluminum toxicity recovery processes in root apices. Possible association with oxidative stress [J]. Plant Science, 2012, 185(186): 1–8.
[2] Jang M G, Kim Y J, Jang G H, Sukweenadhi J, Kwon W S, Yang D C. Ectopic overexpression of the aluminum-induced protein gene from panax ginseng enhances heavy metal tolerance in transgenic Arabidopsis [J]. Plant Cell, Tissue & Organ Culture, 2014, 119(1): 95–106.
[3] 沈仁芳. 铝在土壤–植物中的行为及植物的适应机制[M]. 北京: 科学出版社, 2008.
[4] 张婷婷, 刘子凡, 安锋, 谢贵水. 铝胁迫造成橡胶苗死亡的机制研究[J]. 热带作物学报, 2020, 41(12): 2439–2445.
[5] Liang C, Pi?eros M A, Tian J, Yao Z, Sun L, Liu J, Shaff J, Coluccio A, Kochian L V, Liao H. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils [J]. Plant Physiology, 2013, 161(3): 1347–1361.
[6] Kochian L V, Pi?eros M A, Hoekenga O A. The Physiology, genetics and molecular biology of plant aluminum resistance and toxicity [J]. Plant and Soil, 2005, 274(1–2): 175–195.
[7] Delhalze E, Ryan P R. Aluminum toxicity and tolerance in plant [J]. Plant Physiology, 1995, 107: 315–321.
[8] 田仁生, 刘厚田. 酸化土壤中铝及其植物毒性[J]. 环境科学, 1990(6): 41–46.
[9] Hirano Y, Isomura A, Kaneko S. Root morphology and nutritional status of Japanese red cedar saplings subjected to in situ levels of aluminum in forest soil solution [J]. Journal of Forestry Research, 2003, 8(3): 209–214.
[10] 冯婧玮, 冯万艳, 孙学广. 粘盖乳牛肝菌在低磷、酸铝胁迫下的生长和代谢响应[J]. 菌物学报, 2022, 41(7): 1055–1067.
[11] 李快芬. 菌根化马尾松幼苗对铝胁迫的响应[D]. 贵阳: 贵州大学硕士学位论文, 2019.
[12] 俞嘉瑞, 袁海生. 外生菌根真菌的共生互作和宿主选择机制研究进展[J/OL]. 菌物学报: 2023, 42(1), 1–18. http://kns.cnki. net/kcms/detail/11.5180.Q.20221111.0943.006.html.
[13] 王艺, 丁贵杰. 外生菌根对马尾松幼苗生长、生理特征和养分的影响[J]. 南京林业大学学报(自然科学版), 2013, 37(2): 97–102.
[14] 弓明钦, 陈应龙, 仲崇禄. 菌根研究及应用[M]. 北京: 中国林业出版社, 1997.
[15] 付瑞, 郭素娟, 马履一. 菌根化栓皮栎苗木对不同土壤水分条件的形态和生理响应[J]. 西北林学院学报, 2011, 26(2): 101–104.
[16] Van Assche J A . The effects of cadmium on ectomycorrhizal Pinus sylvestris L. [J]. New Phytologist, 1993, 123(2): 325–333.
[17] Miransari M. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals [J]. Biotechnology Advances, 2011, 29(6): 645–653.
[18] Khullar S. Reddy M S. Ectomycorrhizal fungi and its role in metal homeostasis through metallothionein and glutathione mechanisms [J]. Current Biotechnology, 2016, 5(3): 1–11.
[19] Perez-de-Mora A, Reuter B, Lucio M. Activity of native hydrolytic enzymes and their association with the cell wall of three ectomycorrhizal fungi [J]. Mycorrhiza, 2013, 23(3): 185–197.
[20] 谷小伟, 张四银. 分光光度计法测定紫菜中铝的含量[J]. 现代农业科技, 2013(23): 294–295.
[21] 杨剑虹, 王成林, 代亨林. 土壤农化分析与环境监测[M]. 北京: 中国大地出版社, 2008: 281–294.
[22] 史树德, 孙亚卿, 魏磊. 植物生理学实验指导[M]. 北京: 中国林业出版社, 2011: 76–164.
[23] 叶尚红, 张志明, 陈疏影. 植物生理学实验指导[M]. 北京: 云南科技出版社, 2004: 39–41.
[24] Agarwal P, Sah P. Ecological importance of ectomycorrhizae in world forest ecosystems [J]. Nature and Science, 2009, 7(2): 107–116.
[25] 黄志基, 黄艺, 彭博. 铜镉胁迫对2种菌根真菌生长和细胞壁离子交换量的影响[J]. 环境科学, 2006(8): 1654–1658.
[26] 周倩. 低pH时外化菌根真菌对铅毒的响应及抗(耐)性机理研究[D]. 重庆: 西南大学硕士学位论文, 2013.
[27] 张淑彬, 冯固, 李晓林. 土壤中镉对丛枝菌根真菌Glomus mosseae生长的效应[J]. 菌物学报, 2005(4): 106–111.
[28] 刘萍. 酸铝胁迫下一氧化氮对格木幼苗生长生理的缓解作用[D]. 南宁: 广西大学硕士学位论文, 2016.
[29] 宋微, 吴小芹, 叶建仁. 6种外生菌根真菌对895杨矿质营养吸收的影响[J]. 南京林业大学学报(自然科学版), 2011, 35(2): 35–38.
[30] 邹慧, 曾杰. 菌根对林木生理代谢影响研究进展[J]. 世界林业研究, 2018, 31(2): 19–24.
[31] 张海珠, 李杨, 张彦如, 张杰, 黄琴, 周浓. 菌根真菌处理下滇重楼对营养元素的吸收和积累[J]. 环境化学, 2019, 38(3): 615–625.
[32] Hawkins B J, Jones M D, Kranabetter J M. Ectomycorrhizal and tree seedling nitrogen nutrition in forest restoration [J]. New Forests, 2015, 46(5-6): 747–771.
[33] 王明霞, 袁玲, 黄建国, 周志峰. 4株外生菌根真菌对Al~(3+)吸收与吸附的研究[J]. 环境科学, 2015, 36(9): 3479–3485.
[34] Blaudez D. Botton B, Chalot M. Cadmium uptake and subcellular compartmentation in ectomycorrhizal fungus Paxillus involutus [J]. Microbiology, 2000, 146(5): 1109–1117.
[35] 邓雪梅. 酸铝胁迫下难溶性磷对外生菌根真菌生长、无机磷形态及抗氧化酶活性的影响[D]. 重庆: 西南大学硕士学位论文, 2017.
[36] 孙佳琦, 曹文琪, 冷平生, 胡增辉. 接种4种外生菌根真菌对槲树幼苗生长、光合及营养元素含量的影响[J]. 中南林业科技大学学报, 2021, 41(10): 67–74,101.
[37] 刘森, 李鹏, 李春华, 吴立潮, 涂佳. 泡桐幼苗对铝胁迫的生理响应[J]. 中南林业科技大学学报, 2020, 40(6): 44–52,62.
[38] 纪雨薇. 马尾松铝胁迫生理响应机制[D]. 重庆: 西南大学硕士学位论文, 2016.
[39] 陈瑶. 生菜根系多酚对铝胁迫的响应及其在耐铝性中的作用机制[D]. 杭州: 浙江大学硕士学位论文, 2020.
[40] Giannakoula A, Moustakas M, Syros T, Yupsanis T. Aluminum stress induces up-regulation of an efficient antioxidant system in the Al–tolerant maize line but not in the Al-sensitive line [J]. Environmental and Experimental Botany, 2010, 67: 487–494.
[41] Yu Y, Zhou W W, Liang X, Li K J, Lin X Y. Increased bound putrescine accumulation contributes to the maintenance of antioxidant enzymes and higher aluminum tolerance in wheat [J]. Environmental Pollution, 2019, 252: 941–949.
[42] 唐可, 娄赛炜, 倪晓菁, 鄢蕙, 彭博权, 金华, 方幽文, 蒋丽慧, 鲍若妍, 方芳, 吴玉环, 刘鹏. 硼添加对铝胁迫下栝楼生长和生理的影响[J/OL]. 生态学报, 2023(7): 1–12.
|