[1] 中国科学院中国植物志编辑委员会. 中国植物志(第16卷第1分册)[M]. 北京: 科学出版社, 1989: 16–17.
[2] 王仁师. 关于石蒜属(Lycoris)的生态地理[J]. 西南林学院学报, 1990, 10(1): 41–47.
[3] Tsi Z H, Meerow A W. Lycoris Herbert [M]//Wu Z Y, Raven P H, Hong D Y. Flora of China (Vol. 24). Beijing: Science Press, 2000: 266269.
[4] Li Q Z, Li Z G, Cai Y M, Zhang Y C. Lycoris chunxiaoensis (Amaryllidaceae), a new species from Zhejiang, China J. Annales Botanici Fennici, 2022, 59(1): 5356.
[5] Zhang S Y, Hu Y F, Wang H T, Zhang P C, Shao J W. Over 30 years of misidentification: a new nothospecies Lycoris × jinzheniae (Amaryllidaceae) in eastern China, based on molecular, morphological, and karyotypic evidence J. Plants, 2022, 11(13): 1–11.
[6] Lou Y L, Ma D K, Jin Z T, Wang H, Lou L H, Jin S H, Liu K, Liu B B. Phylogenomic and morphological evidence reveal a new species of spider lily, Lycoris longifolia (Amaryllidaceae) from China J. PhytoKeys, 2022, 210: 79–92.
[7] Zhang S Y, Wang H T, Hu Y F, Zhang W, Hu S, Shao J W. Lycoris insularis (Amaryllidaceae), a new species from eastern China revealed by morphological and molecular evidence J. PhytoKeys, 2022, 206: 153–165.
[8] Zhang S Y, Huang Y, Zhang P, Zhu K R, Chen Y B, Shao J W. Lycoris wulingensis, a dwarf new species of Amaryllidaceae from Hunan, China J. PhytoKeys, 2021, 177: 1–9.
[9] Lu Y J, T, Wang T, Wang Y C, Zhang P C. Lycoris tsinlingensis (Amaryllidaceae), a new species from Shaanxi, China J. Annales Botanici Fennici, 2020, 57(4–6): 193196.
[10] Meng W Q, Zheng L, Shao J W, Zhou S B, Liu K. A new natural allotriploid, Lycoris × hubeiensis hybr. nov. (Amaryllidaceae), identified by morphological, karyological and molecular data J. Nordic Journal of Botany, 2018, 36(6): 16.
[11] Qin W H, Meng W Q, Zhang D, Wang Y, Li Z L, Sun L, Liu K. A new Amaryllidaceae genus, Shoubiaonia, from Yunnan Province, China J. Nordic Journal of Botany, 2021, 39(6): 19.
[12] 邹毅, 杨建华, 陈尚钘. 一类优良球根花卉石蒜的简述[J]. 安徽农业科学, 2006, 34(15): 3667–3678.
[13] 颜仁龙. 红花石蒜中生物喊的研究[D]. 成都: 西南交通大学硕士学位论文, 2009.
[14] López S, Bastida J, Viladomat F, Codina C. Acetylcholinesterase inhibitory activity of some Amaryllidaceae alkaloids and narcissus extracts [J]. Life Sciences, 2002, 71(21): 2521–2529.
[15] 季宇彬, 辛国松, 曲中原, 邹翔, 于淼. 石蒜属植物生物碱类化学成分和药理作用研究进展[J]. 中草药, 2016, 47(1): 157–162.
[16] 刘旭. 虎眼万年青总皂苷对乳腺癌细胞增殖与凋亡的影响及机制研究[D]. 南京: 南京中医药大学博士学位论文, 2012.
[17] 杨月莹, 于淼, 季宇彬. 石蒜属植物生物碱药理作用的研究[J]. 哈尔滨商业大学学报(自然科学版), 2016, 32(2): 129–131.
[18] 袁菊红, 胡绵好. 石蒜属种质资源及其开发利用研究(综述)[J]. 亚热带植物科学, 2009, 38(2): 79–84.
[19] Traub H P, Moldenke H N. Amaryllidaceae: Tribe Amarylleae [M]. Stamford: The American Plant Life Society, 1949: 159–163.
[20] Hsu P S, Siro K, Yu Z Z, Lin J Z. Synopsis of the genus Lycoris (Amaryllidaceae) [J]. Sida, 1994, 16(2): 301–331.
[21] 郑玉红, 李莹, 彭峰, 何树兰, 夏冰. 基于rpL36–rpS8序列的石蒜属植物亲缘关系研究[J]. 江苏农业科学, 2010(3): 37–39.
[22] 袁菊红, 孙视, 彭峰, 冯煦, 郑玉红, 夏冰. 石蒜属叶绿体trnL–F序列的变异与系统聚类分析[J]. 中国中药杂志, 2008, 33(13): 1523–1527.
[23] 袁菊红. 中国石蒜属遗传多样性与亲缘关系的SSR分析[J]. 亚热带植物科学, 2011, 40(4): 1–7.
[24] 张露, 蔡友铭, 诸葛强, 楼炉焕, 邹惠渝, 黄敏仁, 王明庥. 石蒜属种间亲缘关系RAPD分析[J]. 遗传学报, 2002, 29(10): 915–921.
[25] 邓传良, 周坚. 石蒜属植物分支系统学分析[J]. 植物研究, 2005, 25(4): 393–399.
[26] 于惠敏. 植物的叶绿体基因组[J]. 植物生理学通讯, 2001, 37(5): 483–488.
[27] 张韵洁, 李德铢. 叶绿体系统发育基因组学的研究进展[J]. 植物分类与资源学报, 2011, 33(4): 365–375.
[28] Clegg M T, Gaut B S, Learn G H Jr, Morton B R. Rates and patterns of chloroplast DNA evolution [J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(15): 6795–6801.
[29] 樊守金, 郭秀秀. 植物叶绿体基因组研究及应用进展[J]. 山东师范大学学报(自然科学版), 2022, 37(1): 22–31.
[30] 夏铭泽, 张发起, 迟晓峰, 韩霜, 陈世龙. 梅花草属叶绿体基因组进化分析[J]. 植物研究, 2022, 42(4): 626636.
[31] 罗瑶, 胡本祥, 张晗, 史嘉周, 姬海月, 净易尧, 陈晓颖, 王帮庆, 颜永刚, 赵璠, 李艳茸, 彭亮. 卵叶远志叶绿体基因组序列特征与系统发育分析J. 中草药, 2023, 54(24): 19.
[32] Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data [J]. Bioinformatics, 2012, 28(12): 1647–1649.
[33] Greiner S, Lehwark P, Bock R. Organellar Genome DRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes [J]. Nucleic Acids Research, 2019, 47(W1): W59–W64.
[34] Beier S, Thiel T, Münch T, Scholz U, Mascher M. MISA-web: a web server for microsatellite prediction [J]. Bioinformatics, 2017, 33(16): 2583–2585.
[35] Kurtz S, Choudhuri J V, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. REPuter: the manifold applications of repeat analysis on a genomic scale [J]. Nucleic Acids Research, 2001, 29(22): 4633–4642.
[36] Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets [J]. Molecular Biology and Evolution, 2016, 33(7): 1870–1874.
[37] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: An integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194–1202.
[38] Amiryousefi A, Hyv?nen J, Poczai P. IRscope: an online program to visualize the junction sites of chloroplast genomes [J]. Bioinformatics, 2018, 34(17): 3030–3031.
[39] Mayor C, Brudno M, Schwartz J R, Poliakov A, Rubin E M, Frazer K A, Pachter L S, Dubchak I. VISTA: visualizing global DNA sequence alignments of arbitrary length [J]. Bioinformatics, 2000, 16(11):1046–1047.
[40] Katoh K, Standley D M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability [J]. Molecular Biology and Evolution, 2013, 30(4): 772–780.
[41] Darling A C, Mau B, Blattner F R, Perna N T. Mauve: multiple alignment of conserved genomic sequence with rearrangements [J]. Genome Research, 2004, 14(7): 1394–1403.
[42] Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data [J]. Bioinformatics, 2009, 25(11): 1451–1452.
[43] Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution [J]. Bioinformatics, 1998, 14(9): 817–818.
[44] Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post–analysis of large phylogenies [J]. Bioinformatics, 2014, 30(9): 1312–1313.
[45] Ronquist F, Teslenko M, van der Mark P, Ayres D L, Darling A, H?hna S, Larget B, Liu L, Suchard M A, Huelsenbeck J P. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space [J]. Systematic Biology, 2012, 61(3): 539–542.
[46] Peden J F. Analysis of codon usage [D]. Nottingham: University of Nottingham, PhD dissertation, 1999.
[47] Kurita S, Hsu P S. Hybrid complex in Lycoris, Amaryllidaceae (Abstract) [J].American Journal of Botany, 1996, 83(6, Suppl.): 207.
[48] 秦卫华, 周守标, 汪恒英, 王晖. 石蒜属植物的研究进展[J]. 安徽师范大学学报(自然科学版), 2003, 26(4): 385–390.
[49] Kim M L. Lycoris flavescens var. uydoensis M. Kim: A new variety of Lycoris (Amaryllidaceae) from Korea [J]. Korean Journal of Plant Taxonomy, 1996, 26(4): 263–269.
[50] 张鹏翀, 鲍淳松, 吴恩南, 高淑莹. 陕西石蒜染色体核型分析[J]. 黑龙江农业科学, 2019(3): 24–28.
[51] 卓蕾, 向成丽, 肖杰, 叶媛丽. SSR标记在植物种质资源鉴定的应用进展[J]. 现代园艺, 2021, 44(15): 9–11.
[52] 杨梦婷, 黄洲, 干建平, 徐君驰, 庞基良. SSR分子标记的研究进展[J]. 杭州师范大学学报(自然科学版), 2019, 18(4): 429–436.
[53] 田星, 刘莹莹, 张颖敏, 杨从卫, 钱子刚, 李国栋. 藜芦属药用植物的叶绿体基因组比较分析和系统发育研究[J]. 中草药, 2022, 53(4): 1127–1137.
[54] Huang H, Shi C, Liu Y, Mao S Y, Gao L Z. Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: genome structure and phylogenetic relationships [J]. BMC Evolutionary Biology, 2014, 14(1): 1–17.
[55] Zhang F, Wang T, Shu X, Wang N, Zhuang W, Wang Z. Complete chloroplast genomes and comparative analyses of L. chinensis, L. anhuiensis, and L. aurea (Amaryllidaceae) [J]. International Journal of Molecular Sciences, 2020, 21(16): 1–14.
[56] Zhang F, Wang N, Cheng G, Shu X, Wang T, Zhuang W, Lu R, Wang Z. Comparative chloroplast genomes of four Lycoris species (Amaryllidaceae) provides new insight into interspecific relationship and phylogeny [J]. Biology, 2021, 10(8): 1–14.
[57] 袁菊红. 中国原产石蒜属植物的数量分类和主成分分析[J]. 亚热带植物科学, 2010, 39(3): 32–37.
[58] 黄想安, 董美芳, 阎学燕, 尚富德. 石蒜属种间亲缘关系AFLP分析[J]. 中草药, 2011, 42(1): 148–152.
[59] 袁菊红. 中国石蒜属(Lycoris Herb.)种间亲缘关系与居群分子标记研究[D]. 南京: 南京农业大学博士学位论文, 2007.
|