Subtropical Plant Science ›› 2023, Vol. 52 ›› Issue (3): 242-252.DOI: 10.3969/j.issn.1009-7791.2023.03.009
• Plant ecology, resources and taxonomy • Previous Articles Next Articles
WANG Li-ping, WU Jun-jie*, CHEN Feng-xian, FENG Zhe, YU Xiao-li, SUN Ji-wen
Received:
2023-04-12
Accepted:
2023-06-13
Online:
2023-06-20
Published:
2023-08-24
Contact:
WU Jun-jie
王丽萍,乌俊杰*,陈凤仙,冯 哲,于小莉,孙继文
通讯作者:
乌俊杰
基金资助:
CLC Number:
WANG Li-ping, CHEN Feng-xian, FENG Zhe, YU Xiao-li, SUN Ji-wen, WU Jun-jie. Does Phylogenetic Relatedness Affect the Neighborhood Effects among Neighbors in Plant Communities?[J]. Subtropical Plant Science, 2023, 52(3): 242-252.
王丽萍, 乌俊杰, 陈凤仙, 冯 哲, 于小莉, 孙继文. 植物群落邻体间的系统发育关系是否影响邻体效应?[J]. 亚热带植物科学, 2023, 52(3): 242-252.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.yrdzwkx.com/EN/10.3969/j.issn.1009-7791.2023.03.009
[1] Butterfield B J. Effects of facilitation on community stability and dynamics: synthesis and future directions [J]. Journal of Ecology, 2009, 97(6): 1192–1201. [2] Callaway R M, Brooker R W, Choler P, Kikvidze Z, Lortie C J, Michalet R, Paolini L, Pugnaire F I, Newingham B A, Aschehoug E T, Armas C, Kikodze D, Cook B J. Positive interactions among alpine plants increase with stress [J]. Nature, 2002, 417(6891): 844–848. [3] Weiner J. Neighbourhood interference amongst Pinus rigida individuals [J]. Journal of Ecology, 1984, 72(1): 183–195. [4] Gilbert G S, Webb C O. Phylogenetic signal in plant pathogen-host range [J]. Proceedings National Academy Sciences of United States of America, 2007, 104(12): 4979–4983. [5] Liu X B, Liang M X, Etienne R S, Wang Y F, Staehelin C, Yu S X. Experimental evidence for a phylogenetic Janzen-Connell effect in a subtropical forest [J]. Ecology Letters, 2012, 15(2): 111–118. [6] Webb C O, Gilbert G S, Donoghue M J. Phylodiversity- dependent seedling mortality, size structure, and disease in a Bornean rain forest [J]. Ecology, 2006, 87(7 Suppl): S123–131. [7] Metz M R, Sousa W P, Valencia R. Widespread density- dependent seedling mortality promotes species coexistence in a highly diverse Amazonian rain forest [J]. Ecology, 2010, 91(12): 3675–3685. [8] Zhu Y, Comita L S, Hubbell S P, Ma K P. Conspecific and phylogenetic density-dependent survival differs across life stages in a tropical forest [J]. Journal of Ecology, 2015, 103(4): 957–966. [9] Lebrija-Trejos E, Wright S J, Hernández A, Reich P B. Does relatedness matter? Phylogenetic density-dependent survival of seedlings in a tropical forest [J]. Ecology, 2014, 95(4): 940–951. [10] Gilbert G S, Webb C O. Phylogenetic signal in plant pathogen- host range [J]. Proceedings of the National Academy of Sciences, 2007, 104: 4979–4983. [11] Novotny V, Basset Y, Miller S E, Weiblen G D, Bremer B, Cizek L, Drozd P. Low host specificity of herbivorous insects in a tropical forest [J]. Nature, 2002, 416: 841–844. [12] Weiblen G D, Webb C O, Novotny V, Basset Y, Miller S E. Phylogenetic dispersion of host use in a tropical insect herbivore community [J]. Ecology, 2006, 87(7 Suppl): S62–75. [13] Vamosi S M, Heard S B, Vamosi J C, Webb C O. Emerging patterns in the comparative analysis of phylogenetic community structure [J]. Mol Ecol, 2009, 18(4): 572–592. [14] Baldeck C A, Kembel S W, Harms K E, Yavitt J B, John R, Turner B L, Chuyong G B, Kenfack D, Thomas D W, Madawala S, Gunatilleke N, Gunatilleke S, Bunyavejchewin S, Kiratiprayoon S, Yaacob A, Nur Supardi M N, Valencia R, Navarrete H, Davies S J, Hubbell S P, Dalling J W. A taxonomic comparison of local habitat niches of tropical trees [J]. Oecologia, 2013, 173(4): 1491–1498. [15] Kembel S W, Hubbell S P. The phylogenetic structure of a neotropical forest tree community [J]. Ecology, 2006, 87(7 Suppl): S86–99. [16] Wu J J, Swenson N G, Brown C, Zhang C C, Yang J, Ci X Q, Li J, Sha L Q, Cao M, Lin L X. How does habitat filtering affect the detection of conspecific and phylogenetic density dependence? [J]. Ecology, 2016, 97(5): 1182–1193. [17] Tito De Morais C, Kettle C J, Philipson C D, Maycock C R, Burslem D F R P, Khoo E, Ghazoul J, Zuidema P. Exploring the role of genetic diversity and relatedness in tree seedling growth and mortality: A multispecies study in a Bornean rainforest [J]. Journal of Ecology, 2020, 108(3): 1174–1185. [18] Kunstler G, Lavergne S, Courbaud B, Thuiller W, Vieilledent G, Zimmermann N E, Kattge J, Coomes D a J E L. Competitive interactions between forest trees are driven by species' trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly [J] Ecology Letters, 2012, 15(8): 831–840. [19] Mahon M B, Jennings D E, Civitello D J, Lajeunesse M J, Rohr J. Functional similarity, not phylogenetic relatedness, predicts the relative strength of competition [J]. bioRxiv, 2021, 11(1): e453226. [20] Gonzalez M A, Roger A L, Courtois E A, Jabot F, Norden N, Paine C E T, Baraloto C, Th??Baud C, Chave J R M. Shifts in species and phylogenetic diversity between sapling and tree communities indicate negative density dependence in a lowland rain forest [J]. Journal of Ecology, 2010, 98(1): 137–146. [21] Dostal P. Plant competitive interactions and invasiveness: searching for the effects of phylogenetic relatedness and origin on competition intensity [J]. The American Naturalist, 2011, 177(5): 655–667. [22] Burns J H, Strauss S Y. Effects of competition on phylogenetic signal and phenotypic plasticity in plant functional traits [J]. Ecology, 2012, 93(Suppl 8): S126–137. [23] Wills C, Harms K E, Wiegand T, Punchi–Manage R, Gilbert G S, Erickson D L, Kress W J, Hubbell S P, Gunatilleke C V S, Gunatilleke I a U N. Persistence of neighborhood demographic influences over long phylogenetic distances may help drive post–speciation adaptation in tropical forests [J]. PLoS ONE, 2016, 11(6): e0168976. [24] Alcantara J M, Garrido J L, Rey P J. Plant species abundance and phylogeny explain the structure of recruitment networks [J]. New Phytologist, 2019, 223(1): 366–376. [25] Williams E W, Zeldin J, Semski W R, Hipp A L, Larkin D J. Phylogenetic distance and resource availability mediate direction and strength of plant interactions in a competition experiment [J]. Oecologia, 2021, 197(2): 459–469. [26] Castillo J P, Verdú M, Valiente-Banuet A. Neighborhood phylodiversity affects plant performance [J]. Ecology, 2010, 91(12): 3656–3663. [27] Burns J H, Strauss S Y. More closely related species are more ecologically similar in an experimental test [J]. Proceedings National Academy Sciences of United States of America, 2011, 108(13): 5302–5307. [28] Lyu S M, Liu X, Venail P, Zhou S. Functional dissimilarity, not phylogenetic relatedness, determines interspecific interactions among plants in the Tibetan alpine meadows [J]. Oikos, 2017, 126(3): 381–388. [29] Chen Y X, Wright S J, Muller-Landau H C, Hubbell S P, Wang Y F, Yu S X. Positive effects of neighborhood complementarity on tree growth in a Neotropical forest [J]. Ecology, 2016, 97(3): 776–785. [30] Pu X C, Jin G Z. Conspecific and phylogenetic density- dependent survival differs across life stages in two temperate old-growth forests in Northeast China [J]. Forest Ecology and Management, 2018, 424: 95–104. [31] Ali A, Yan E R. Consequences of phylogenetic conservativeness and functional trait similarity on aboveground biomass vary across subtropical forest strata [J]. Forest Ecology and Management, 2018, 429: 28–35. [32] Shuai F M, Wang Y F, Yu S X. Density dependence in forests is stronger in tropical and subtropical climates among closely related species [J]. Ecography, 2014, 37(7): 659–669. [33] Uriarte M, Swenson N G, Chazdon R L, Comita L S, John Kress W, Erickson D, Forero-Montana J, Zimmerman J K, Thompson J. Trait similarity, shared ancestry and the structure of neighbourhood interactions in a subtropical wet forest: implications for community assembly [J]. Ecol Letters, 2010, 13(12): 1503–1514. [34] 任思远. 谱系制约效应对宝天曼森林个体存活的影响[D]. 郑州: 河南农业大学硕士学位论文, 2015. [35] Levin S C, Crandall R M, Pokoski T, Stein C, Knight T M. Phylogenetic and functional distinctiveness explain alien plant population responses to competition [J]. Proceedings of the Royal Society B-Biological Sciences, 2020, 287(1930): 20201070. [36] Du Y J, Queenborough S A, Chen L, Wang Y Q, Mi X C, Ma K P, Comita L S. Intraspecific and phylogenetic density-dependent seedling recruitment in a subtropical evergreen forest [J]. Oecologia, 2017, 184(1): 193–203. [37] Luo W Q, Lan R X, Chen D X, Zhang B W, Xi N X, Li Y Z, Fang S Q, Valverde-Barrantes O J, Eissenstat D M, Chu C J, Wang Y S. Limiting similarity shapes the functional and phylogenetic structure of root neighborhoods in a subtropical forest [J]. New Phytologist, 2021, 229(2): 1078–1090. [38] Huang T H, Huang C L, Lin Y C, Sun I F. Seedling survival simultaneously determined by conspecific, heterospecific, and phylogenetically related neighbors and habitat heterogeneity in a subtropical forest in Taiwan [J]. Ecology and Evolution, 2022, 12(1): e8525. [39] Jones F A, Comita L S. Neighbourhood density and genetic relatedness interact to determine fruit set and abortion rates in a continuous tropical tree population [J]. Proceedings of the Royal Society B–Biological Sciences, 2008, 275(1652): 2759–2767. [40] Paine C E, Norden N, Chave J, Forget P M, Fortunel C, Dexter K G, Baraloto C. Phylogenetic density dependence and environmental filtering predict seedling mortality in a tropical forest [J]. Ecol Letters, 2012, 15(1): 34–41. [41] Chen L, Comita L S, Wright S J, Swenson N G, Zimmerman J K, Mi X C, Hao Z Q, Ye W H, Hubbell S P, Kress W J, Uriarte M, Thompson J, Nytch C J, Wang X G, Lian J Y, Ma K P. Forest tree neighborhoods are structured more by negative conspecific density dependence than by interactions among closely related species [J]. Ecography, 2018, 41(7): 1114–1123. [42] Akaji Y, Miyazaki Y, Hirobe M, Makimoto T, Sakamoto K. The relationship between seedling survival rates and their genetic relatedness to neighboring conspecific adults [J]. Plant Ecology, 2016, 217(4): 465–470. [43] Jiang Y, Wang Z H, Chu C J, Kembel S W, He F L. Phylogenetic dependence of plant-soil feedback promotes rare species in a subtropical forest [J]. Journal of Ecology, 2022, 110(6): 1237–1246. [44] Jurado E, Marroquín J, Flores J, Pando M, González H, Alanís E. Germination of native legumes in relation to competition of neighbor seeds in Northeastern Mexico [J]. The Journal of the Torrey Botanical Society, 2020, 147(2): 167–171. [45] Queenborough S A, Burslem D F, Garwood N C, Valencia R. Taxonomic scale-dependence of habitat niche partitioning and biotic neighbourhood on survival of tropical tree seedlings [J]. Proceedings of the Royal Society B–Biological Sciences, 2009, 276(1676): 4197–205. [46] Cao J, Zhang C Y, Zhao B, Li X Y, Hou M M, Zhao X H. Seedling density dependence regulated by population density and habitat filtering: Evidence from a mixed primary broad- leaved Korean pine forest in Northeastern China [J]. Annals of Forest Science, 2018, 75(1): 25. [47] Fang S, Yuan Z Q, Lin F, Ye J, Hao Z Q, Wang X G. Functional and phylogenetic structures of woody plants in broad-leaved Korean pine mixed forest in Changbai Mountains, Jilin, China [J]. Chinese Science Bulletin, 2014, 59(24): 2342–2348. [48] Wright J S. Plant diversity in tropical forests: a review of mechanisms of species coexistence [J]. Oecologia, 2002, 130(1): 1–14. [49] Wills C. Safety in diversity [J]. New Scientist, 1996(2022): 38–42. [50] Peters H A. Neighbour-regulated mortality: the influence of positive and negative density dependence on tree populations in species-rich tropical forests [J]. Ecology Letters, 2003, 6(8): 757–765. [51] Rosindell J, Hubbell S P, Etienne R S. The unified neutral theory of biodiversity and biogeography at age ten [J]. Trends in ecology & evolution, 2011, 26(7): 340–348. [52] Harms K E, Condit R S, Hubbell S P, Foster R B. Habitat associations of trees and shrubs in a 50-ha neotropical forest plot [J]. Journal of Ecology, 2001, 89(6): 947–959. [53] Bader M Y, Ruijten J J A. A topography-based model of forest cover at the alpine tree line in the tropical Andes [J]. Journal of Biogeography, 2008, 35(4):711–723. [54] Zare S, Jafari M, Tavili A, Abbasi H R, Rostampour M. Relationship between environmental factors and plant distribution in arid and semiarid area (Case study: Shahriyar Rangelands, Iran) [J], American–Eurasian Joural of Agricultural & Environmental Science, 2011, 10(1): 97–105. [55] Toledo J J D, Magnusson W E, Castilho C V, Nascimento H E M. Tree mode of death in Central Amazonia: Effects of soil and topography on tree mortality associated with storm disturbances [J]. Forest Ecology and Management, 2012, 263: 253–261. [56] Aryal P, Meiners S J, Carlsward B S. Ectomycorrhizae determine chestnut seedling growth and drought response [J]. Agroforestry Systems, 2021, 95(7): 1251–1260. [57] Losos J B. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species [J]. Ecology letters, 2008, 11(10): 995–1003. [58] Wu B W, Gao C, Chen L, Buscot F, Goldmann K, Purahong W, Ji N N, Wang Y L, Lü P P, Li X C, Guo L D. Host phylogeny is a major determinant of Fagaceae–Associated ectomycorrhizal fungal community assembly at a regional scale [J]. Frontiers in Microbiology, 2018, 9: 2409. [59] Brundrett M. Diversity and classification of mycorrhizal associations [J]. Biological Reviews of the Cambridge Philosophical Society, 2004, 79(3): 473–495. [60] Limaki M K, Nimvari M E, Alavi S J, Mataji A, Kazemnezhad F. Potential elevation shift of oriental beech (Fagus orientalis L.) in Hyrcanian mixed forest ecoregion under future global warming [J]. Ecological Modelling, 2021, 455: 109637. [61] Wei C Q, Jia B B, Gao L L, Liu Z, Liang Y M, Zhang X, Lu X M, Petermann J. Plant growth ability, rather than phylogenetic relatedness, predicts the effect of soil biota from an abandoned field on native and exotic plants [J]. Journal of Plant Ecology, 2023, 16(1): rtac044. [62] Egorov E, Prati D, Durka W, Michalski S G, Fischer M L, Schmitt B, Blaser S, Br?ndle M P. Does land-use intensification decrease plant phylogenetic diversity in local grasslands? [J]. PLoS ONE, 2014, 9(7): e103252. [63] Corradi N, Bonfante P. The arbuscular mycorrhizal symbiosis: origin and evolution of a beneficial plant infection [J]. PLoS Pathog, 2012, 8(4): e1002600. [64] Reinhart K O, Bauer J T, Mccarthy–Neumann S, Macdougall A S, Hierro J L, Chiuffo M C, Mangan S A, Heinze J, Bergmann J, Joshi J, Duncan R P, Diez J M, Kardol P, Rutten G, Fischer M, Van Der Putten W H, Bezemer T M, Klironomos J. Globally, plant-soil feedbacks are weak predictors of plant abundance [J]. Ecology and Evolution, 2021, 11(4): 1756–1768. [65] Hart M M, Reader R J, Klironomos J. Plant coexistence mediated by arbuscular mycorrhizal fungi [J]. Trends in Ecology and Evolution, 2003, 18(8): 418–423. [66] Laliberté E, Lambers H, Burgess T I, Wright S J. Phosphorus limitation, soil–borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands [J]. New Phytologist, 2015, 206(2): 507–521. [67] Nakamura A, Kitching R L, Cao M, Creedy T J, Fayle T M, Freiberg M, Hewitt C N, Itioka T, Koh L P, Ma K, Malhi Y, Mitchell A, Novotny V, Ozanne C M P, Song L, Wang H, Ashton L A. Forests and their canopies: achievements and horizons in canopy science [J]. Trends in Ecology & Evolution, 2017, 32(6): 438–451. [68] Tang H, Dubayah R. Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure [J]. Proceedings National Academy Sciences of United States of America, 2017, 114(10): 2640–2644. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||