[1] Li L, Liu Y M, Liu Y M, He B H, Wang M, Yu C, Weng M. Physiological response and resistance of three cultivars of Acer rubrum L. to continuous drought stress[J]. Acta Ecologica Sinica, 2015,35(6): 196–202.
[2] Zhang F L, Wang Y H, Liu C, Chen F J, Ge H L, Tian F S, Yang T W, Ma K S, Zhang Y. Trichoderma harzianum mitigates salt stress in cucumber via multiple responses[J]. Ecotoxicology and Environmental Safety, 2019,170: 436–445.
[3] Zhang T G, Mo J N, Zhou K, Chang Y. Over expression of Brassica campestris BcICE1 gene increases abiotic stress tolerance in tobacco[J]. Plant Physiology and Biochemistry, 2018,132: 515–523.
[4] Zhou J H, Cheng K, Huang G M, Chen G C, Zhou S B, Huang Y J, Zhang J, Duan H L, Fan H B. Effects of exogenous 3-indoleacetic acid and cadmium stress on the physiological and biochemical characteristics of Cinnamomum camphora[J]. Ecotoxicology and Environmental Safety, 2019. doi:10.1016/j. ecoenv.2019.109998
[5] Aisha M A A, Ahmed E E, Samira A O, Khalid A K. Arginine and salinity stress affect morphology and metabolism of Indian borage (Plectranthus amboinicus Lour.)[J/OL]. Acta Ecologica Sinica, 2020. https://doi.org/10.1016/j.chnaes.2020.04.002.
[6] Zhou X B, Zhang Y M, Ji X H, Alison D, Marcelo S. Combined effects of nitrogen deposition and water stress on growth and physiological responses of two annual desert plants in northwestern China[J]. Environmental and Experimental Botany, 2011,74: 1–8.
[7] 徐芬芬,彦有娟,韦蓉香. NaCl和Na2CO3胁迫对水稻根系生长的影响[J]. 杂交水稻, 2020(3): 76–78.
[8] Kim J J, Park S I, Kim Y H, Park H M, Kim Y S, Yoon H S. Over expression of a proton pumping gene OVP1 enhances salt stress tolerance, root growth and biomass yield by regulating ion balance in rice (Oryza sativa L.)[J/OL]. Environmental and Experimental Botany, 2020. https://doi.org/10.1016/j.envexpbot. 2020.104033.
[9] 吴敏,邓平,赵英,赵仕花,陈金妮,舒颖,黄天凤. 喀斯特干旱环境对青冈栎叶片生长及叶绿素荧光动力学参数的影响[J]. 应用生态学报, 2019,30(12): 4071–4081.
[10] 刘璐,李强,丁梦娇,秦缘,周冀衡. 干旱胁迫下不同氮素形态及硝铵比对烤烟苗期生理指标的影响[J]. 扬州大学学报(农业与生命科学版), 2019,40(5): 117–122.
[11] 赵鑫,王文娟,王普昶,黄莉娟,赵丽丽. 不同钙浓度对宽叶雀稗幼苗的生长和抗性生理的影响[J]. 植物生态学报, 2019,43(10): 909–920.
[12] 王文娟,赵丽丽,王普昶,陈超,余青青,张宇君. 氮素水平对宽叶雀稗生理生态的影响[J]. 草业科学, 2019,36(3): 744–753.
[13] 赵雅曼,陈顺钰,张韵,姜云,侯晓龙,蔡丽平. 酸、Cd胁迫对宽叶雀稗种子萌发、幼苗生长及亚细胞结构的影响[J]. 农业环境科学学报, 2019,38(1): 60–69.
[14] 陈顺钰,赵雅曼,李宗勋,韩航,侯晓龙,蔡丽平. Pb、Cd和酸胁迫对宽叶雀稗种子萌发、幼苗生长及抗氧化酶活性的影响[J]. 草地学报, 2018,26(5): 1173–1180.
[15] 高上尧. 铁矿废弃地不同恢复模式主要植物种群生态位特征[J]. 亚热带水土保持, 2020,32(1): 14–18.
[16] 李思诗,司晓静,蒋芳市,林金石,蔡学智,吴俣,黄炎和. 长汀县崩岗区8种禾本科植物根系构型特征[J]. 草业学报, 2018,27(10): 215–222.
[17] 刘聪. 红壤水土流失区植被凋落叶输入对土壤养分的影响特征[D]. 福州: 福建师范大学硕士学位论文, 2018.
[18] 王瑞峰,张海娜,鲁向晖,刘佳丽. 酸胁迫对稀土尾砂废弃地宽叶雀稗种子萌发的影响[J]. 南昌工程学院学报, 2018,37(1): 9–11.
[19] 白鹏,冉春艳,谢小玉. 干旱胁迫对油菜蕾薹期生理特性及农艺性状的影响[J]. 中国农业科学, 2014,47(18): 3566–3576.
[20] Zhang Y M, Li Y J, Feng Q, Shao M H, Yuan F Y, Liu F S. Polydatin attenuates cadmium-induced oxidative stress via stimulating SOD activity and regulating mitochondrial function in Musca domestica larvae[J]. Chemosphere, 2020,248: 126009.
[21] 黄婷,麻冬梅,王文静,赵丽娟,马巧利,蔡进军. 2种紫花苜蓿耐盐生理特性的初步研究[J]. 水土保持学报, 2020,34(2): 216–221.
[22] Hao M L, Liu R T. Response to the comments on: Molecular mechanism of CAT and SOD activity change under MPA-CdTe quantum dots induced oxidative stress in the mouse primary hepatocytes[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019. doi:10.1016/j.saa.2019.05.009.
[23] 杨玉娟. 养分胁迫下麻栎的生长和生理变化研究[D]. 南京: 南京林业大学硕士学位论文, 2011.
[24] 李霞,马晓东,邹竣竹,周晓星,孙振元,韩蕾.菲胁迫下蒿柳抗氧化系统的响应[J]. 林业科学研究, 2020,33(2): 138-144.
[25] Milena C L, GemperlováJana D O, MartincováIlja T P, Gubis R V. Effect of heat stress on polyamine metabolism in proline- over-producing tobacco plants[J]. Plant Science, 2012,182: 49–58.
[26] Rady M M, Taha R S, Mahdi A H A. Proline enhances growth, productivity and anatomy of two varieties of Lupinus termis L. grown under salt stress[J]. South African Journal of Botany, 2016,102: 221–227.
[27] Gao J, Liu L, Ma N, Yang J, Dong Z K, Zhang J S, Zhang J L, Cai M. Effect of ammonia stress on carbon metabolism in tolerant aquatic plant-Myriophyllum aquaticum[J]. Environmental Pollution, 2020. https://doi.org/10.1016/j.envpol.2020.114412. |