亚热带植物科学 ›› 2018, Vol. 47 ›› Issue (04): 395-403.DOI: 10.3969/j.issn.1009-7791.2018.04.017
• 综述 • 上一篇
丁玉娇,韩颖颖,周婧雯
收稿日期:
2018-07-27
修回日期:
2018-08-18
出版日期:
2018-12-30
发布日期:
2018-12-30
通讯作者:
韩颖颖
作者简介:
丁玉娇,硕士研究生,从事低温分子生物学研究。
基金资助:
DING Yu-jiao, HAN Ying-ying, ZHOU Jing-wen
Received:
2018-07-27
Revised:
2018-08-18
Online:
2018-12-30
Published:
2018-12-30
Contact:
HAN Ying-ying
摘要: 蛋白质S-棕榈酰化是最常见的具有16碳脂肪酸棕榈酸酯的脂质修饰形式,调节蛋白质的运输和功能。文中主要概括从植物到哺乳动物中发现的具有棕榈酰基转移酶活性的保守DHHC蛋白家族,并介绍蛋白质棕榈酰化的研究方法,及检测棕榈酰化蛋白质的位点预测方法(CSS-Palm、NBA-Palm、TermiNator2)、放射性标记法(用3H棕榈酸酯或125I-IC16棕榈酸酯)和非放射性标记法(化学标记和质谱法),总结蛋白棕榈酰化的抑制技术以及抑制剂类型(包括2-溴棕榈酸酯、浅蓝菌素和衣霉素)。同时概括蛋白棕榈酰化在植物胁迫中的响应,展望其在植物抗逆中的应用前景。
中图分类号:
丁玉娇,韩颖颖,周婧雯. 棕榈酰化蛋白及蛋白质的棕榈酰化研究进展[J]. 亚热带植物科学, 2018, 47(04): 395-403.
DING Yu-jiao, HAN Ying-ying, ZHOU Jing-wen. Progress in Research of Palmitoylated Proteins and Protein Palmitoylation[J]. Subtropical Plant Science, 2018, 47(04): 395-403.
[1] Seet B T, Dikic I, Zhou M M, Pawson T. Reading protein modifications with interaction domains[J]. Nature Reviews Molecular Cell Biology, 2006,7(7): 473—483. [2] Iwanaga T, Tsutsumi R, Noritake J, Fukata Y, Fukata M. Dynamic protein palmitoylation in cellular signaling[J]. Progress in Lipid Research, 2009,48(3): 117—127. [3] Resh M D. Palmitoylation of ligands, receptors, and intracellular signaling molecules[J]. Sciences Stke Signal Transduction Knowledge Environment, 2006,2006(359):re14. [4] 秦安东,徐林. 蛋白质的棕榈酰化修饰[J]. 生命的化学, 2012,32(4): 332—336. [5] Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, Kondoh H, Takao T, Takada S. Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion[J]. Developmental Cell, 2006,11(6): 791—801. [6] Yang J, Brown M S, Liang G, Grishin N V, Goldstein J L. Identification of the acyltransferase that octanoylates ghrelin, an appetite—stimulating peptide hormone[J]. Cell, 2008,132(3): 96—387. [7] 方彩云,张晓勤,陆豪杰. 蛋白质棕榈酰化修饰的分析方法进展[J]. 分析化学, 2014,42(4): 616—622. [8] 冯晨,冯磊. 蛋白质棕榈酰化对离子型谷氨酸受体运输的调节作用[J]. 中国生物化学与分子生物学报, 2010,26(8): 683—689. [9] Hornemann T. Palmitoylation and depalmitoylation defects[J]. Journal of Inherited Metabolic Disease, 2015,38(1): 179—186. [10] Greaves J, Chamberlain L H. S-acylation by the DHHC protein family[J]. Biochemical Society Transactions, 2010,38(2): 522—524. [11] Kümmel D, Heinemann U, Veit M. Unique self-palmitoylation activity of the transport protein particle component Bet3: A mechanism required for protein stability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(34): 12701—12706. [12] Smotrys J E, Schoenfish M J, Stutz M A, Linder M E. The vacuolar DHHC-CRD protein Pfa3p is a protein acyltransferase for Vac8p[J]. Journal of Cell Biology, 2005,170(7): 1091—1099. [13] Alland L, Peseckis S M, Atherton R E, Berthiaume L, Resh M D. Dual myristylation and palmitylation of Src family member p59fyn affects subcellular localization[J]. Journal of Biological Chemistry, 1994, 269(24):16701—16705. [14] Resh M D. Use of analogs and inhibitors to study the functional significance of protein palmitoylation[J]. Methods, 2006,40(2): 191—197. [15] Mann R K, Beachy P A. Novel lipid modifications of secreted protein signals[J]. Annual Review of Biochemistry, 2004,73(1): 891—923. [16] Kleuss C, Krause E. Galpha(s) is palmitoylated at the N-terminal glycine[J]. EMBO Journal, 2014,22(4): 826—832. [17] Deschenes R J, Resh M D, Broach J R. Acylation and prenylation of proteins[J]. Current Opinion in Cell Biology, 1990,2(6): 1108—1113. [18] Bartels D J, Mitchell D A, Dong X, Deschenes R J. Erf2, a novel gene product that affects the localization and palmitoylation of Ras2 in Saccharomyces cerevisiae[J]. Molecular & Cellular Biology, 1999,19(10): 6775—6787. [19] Mitchell D A, Mitchell G, Ling Y, Budde C, Deschenes R J. Mutational analysis of Saccharomyces cerevisiae Erf2 reveals a two-step reaction mechanism for protein palmitoylation by DHHC enzymes[J]. Journal of Biological Chemistry, 2010,285(49): 38104—38114. [20] Roth A F, Feng Y, Chen L, Davis N G. The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase[J]. Journal of Cell Biology, 2002,159(1):23—28. [21] Hou H, Subramanian K, Lagrassa T J, Markgraf D, Dietrich L E, Urban J, Decker N, Ungermann C. The DHHC protein Pfa3 affects vacuole-associated palmitoylation of the fusion factor Vac8[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(48): 17366—17371. [22] Lam K K, Davey M, Sun B, Roth A F, Davis N G, Conibear E. Palmitoylation by the DHHC protein Pfa4 regulates the ER exit of Chs3[J]. Journal of Cell Biology, 2006,174(1): 19—25. [23] Gonzálezsiso M I, Garcíaleiro A, Tarrío N, Cerdán M E. Sugar metabolism, redox balance and oxidative stress response in the respiratory yeast Kluyveromyces lactis[J]. Microbial Cell Factories, 2009,8(1): 46—62. [24] Valdez-taubas J, Pelham H. Swf1-dependent palmitoylation of the SNARE Tlg1 prevents its ubiquitination and degradation[J]. EMBO Journal, 2005,24(14): 2524—2532. [25] Ohno Y, Kihara A, Sano T, Igarashi Y. Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins[J]. Biochimica Et Biophysica Acta, 2006,1761(4): 474—483. [26] Fukata M, Fukata Y, Adesnik H, Nicoll R A, Bredt D S. Identification of PSD-95 palmitoylating enzymes[J]. Neuron, 2004,44(6): 987—996. [27] Saleem A N, Chen Y H, Baek H J, Hsiao Y W, Huang H W, Kao H J, Liu K M, Shen L F, Song I W, Tu C P, Wu J Y, Kikuchi T, Justice M J, Yen J J, Chen Y T. Mice with alopecia, osteoporosis, and systemic amyloidosis due to mutation in Zdhhc13, a gene coding for palmitoyl acyltransferase[J]. Plos Genetics, 2010,6(6): e1000985. [28] Yanai A, Huang K, Kang R, Singaraja R R, Arstikaitis P, Gan L, Orban P C, Mullard A, Cowan C M, Raymond L A, Drisdel R C, Green W N, Ravikumar B, Rubinsztein D C, El-Husseini A, Hayden M R. Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function[J]. Nature Neuroscience, 2006,9(6): 824—831. [29] Mill P, Lee A W S, Fukata Y, Tsutsumi R, Fukata M, Keighren M, Porter R M, McKie L, Smyth I, Jackson I J. Palmitoylation regulates epidermal homeostasis and hair follicle differentiation[J]. Plos Genetics, 2009,5(11): e1000748. [30] Fernández-Hernando C, Fukata M, Bernatchez P N, Fukata Y, Lin M I, Bredt D S, Sessa W C. Identification of Golgi-localized acyl transferases that palmitoylate and regulate endothelial nitric oxide synthase[J]. Journal of Cell Biology, 2006,174(3): 369—377. [31] Fulton D, Gratton J P, Mccabe T J, Fontana J, Fujio Y, Walsh K, Franke T F, Papapetropoulos A, Sessa W C. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt[J]. Nature, 1999,399(6736): 597—601. [32] Fujiwara Y, Ohata H, Emi M, Okui K, Koyama K, Tsuchiya E, Nakajima T, Monden M, Mori T, Kurimasa A. A 3-Mb physical map of the chromosome region 8p21.3-p22, including a 600-kb region commonly deleted in human hepatocellular carcinoma, colorectal cancer, and non—small cell lung cancer[J]. Genes Chromosomes & Cancer, 2010,10(1): 7—14. [33] Raymond F L, Tarpey P S, Edkins S, Tofts C, O'Meara S, Teague J, Butler A, Stevens C, Barthorpe S, Buck G, Cole J, Dicks E, Gray K, Halliday K, Hills K, Hinton J, Jones D, Menzies A, Perry J, Raine K, Shepherd R, Small A, Varian J, Widaa S, Mallya U, Moon J, Luo Y, Shaw M, Boyle J, Kerr B, Turner G, Quarrell O, Cole T, Easton D F, Wooster R, Bobrow M, Schwartz C E, Gecz J, Stratton M R, Futreal P A. Mutations in ZDHHC9, which encodes a palmitoyltransferase of NRAS and HRAS, cause X-Linked mental retardation associated with a Marfanoid habitus[J]. American Journal of Human Genetics, 2007,80(5): 982—987. [34] Mansouri M R, Marklund L, Gustavsson P, Davey E, Carlsson B, Larsson C, White I, Gustavson K H, Dahl N. Loss of ZDHHC15 expression in a woman with a balanced translocation t(X;15)(q13.3;cen) and severe mental retardation[J]. European Journal of Human Genetics Ejhg, 2005,13(8): 970—977. [35] Hemsley P A, Grierson C S. Multiple roles for protein palmitoylation in plants[J]. Trends in Plant Science, 2008,13(6): 295—302. [36] Zhang Y L, Li E, Feng Q N, Zhao X Y, Ge F R, Zhang Y, Li S. Protein palmitoylation is critical for the polar growth of root hairs in Arabidopsis[J]. Bmc Plant Biology, 2015,15(1): 1—12. [37] Khandelwal A, Elvitigala T, Ghosh B, Quatrano R S. Arabidopsis transcriptome reveals control circuits regulating redox homeostasis and the role of an AP2 transcription factor[J]. Plant Physiology, 2008,148(4): 2050—2058. [38] Zhou L Z, Li S, Feng Q N, Zhang Y L, Zhao X, Zeng Y L, Wang H, Jiang L, Zhang Y. Protein S-ACYL Transferase10 is critical for development and salt tolerance in Arabidopsis[J]. Plant Cell, 2013, 25(3):1093—1107. [39] Lai J, Yu B, Cao Z, Chen Y, Wu Q, Huang J, Yang C. Two homologous protein S-acyltransferases, PAT13 and PAT14, cooperatively regulate leaf senescence in Arabidopsis[J]. Journal of Experimental Botany, 2015,66(20): 6345—6353. [40] Blaskovic S, Blanc M, Goot F G V D. What does S-palmitoylation do to membrane proteins?[J]. Febs Journal, 2013,280(12): 2766—2774. [41] Kaur I, Yarov-yarovoy V, Kirk L M, Plambeck K E, Barragan E V, Ontiveros E S, Díaz E. Activity-dependent palmitoylation controls syndig1 stability, localization, and function[J]. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 2016,36(29): 7562—7568. [42] Tremp A Z, Al-khattaf F S, Dessens J T. Palmitoylation of Plasmodium alveolins promotes cytoskeletal function[J]. Molecular & Biochemical Parasitology, 2017, 213:16—21. [43] Zeng Q, Wang X, Running M P. Dual lipid modification of Arabidopsis Ggamma-subunits is required for efficient plasma membrane targeting[J]. Plant Physiology, 2007,143(3): 1119—1131. [44] Manahan C L, Patnana M, Blumer K J, Linder M E. Dual lipid modification motifs in G(alpha) and G(gamma) subunits are required for full activity of the pheromone response pathway in Saccharomyces cerevisiae[J]. Molecular Biology of the Cell, 2000,11(3): 957—968. [45] Dammann C, Ichida A, Hong B, Romanowsky S M, Hrabak E M, Harmon A C, Pickard B G, Harper J F. Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis[J]. Plant Physiology, 2003,132(4): 1840—1848. [46] Martín M L, Busconi L. Membrane localization of a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation[J]. Plant Journal, 2000,24(4): 429—435. [47] Ueda T, Yamaguchi M, Uchimiya H, Nakano A. Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana[J]. Embo Journal, 2001,20(17): 4730—4741. [48] Xue Y, Chen H, Jin C, Sun Z, Yao X. NBA-Palm: prediction of palmitoylation site implemented in Na?ve Bayes algorithm[J]. BMC Bioinformatics, 2006,7(1): 1—10. [49] 高祥,王子健,孙宁宁,刘宁. 流感病毒蛋白棕榈酰化修饰的研究进展[J]. 中国生物制品学杂志, 2016,29(3): 329—332. [50] Borgelt C, Kruse R. Graphical models-methods for data analysis and mining[J]. Journal of the American Statistical Association, 2001,98(461): 253—254. [51] 刘洁,Baloucoune G A,春雷. 棕榈酰化修饰对G蛋白偶联受体功能的调节作用[J]. 中国生物化学与分子生物学报, 2012,28(2): 99—107. [52] Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X. CSS-Palm 2.0: an updated software for palmitoylation sites prediction[J]. Protein Engineering Design & Selection, 2008,21(11): 639—644. [53] Frottin F, Martinez A, Peynot P, Mitra S, Holz R C, Giglione C, Meinnel T. The proteomics of N-terminal methionine cleavage[J]. Molecular & Cellular Proteomics Mcp, 2006,5(12): 2336—2349. [54] Berthiaume L, Peseckis S M, Resh M D. Synthesis and use of iodo-fatty acid analogs[J]. Methods Enzymology, 1995,250: 454—466. [55] Berzat A C, Buss J E, Chenette E J, Weinbaum C A, Shutes A, Der C J, Minden A, Cox A D. Transforming activity of the Rho family GTPase, Wrch-1, a Wnt-regulated Cdc42 homolog, is dependent on a novel carboxyl-terminal palmitoylation motif[J]. Journal of Biological Chemistry, 2005,280(38): 33055—33065. [56] Drisdel R C, Green W N. Labeling and quantifying sites of protein palmitoylation[J]. Biotechniques, 2004,36(2): 276—285. [57] Liang X, Nazarian A, Erdjument-Bromage H, Bornmann W, Tempst P, Resh M D. Heterogeneous fatty acylation of Src family kinases with polyunsaturated fatty acids regulates raft localization and signal transduction[J]. Journal of Biological Chemistry, 2001,276(33): 30987—30994. [58] Liang X, Lu Y, Neubert T A, Resh M D. Mass spectrometric analysis of GAP-43/neuromodulin reveals the presence of a variety of fatty acylated species[J]. Journal of Biological Chemistry, 2002,277(36): 33032—33040. [59] Liang X, Lu Y, Wilkes M, Neubert T A, Resh M D. The N-terminal SH4 region of the Src family kinase Fyn is modified by methylation and heterogeneous fatty acylation: role in membrane targeting, cell adhesion, and spreading[J]. Journal of Biological Chemistry, 2004,279(9): 8133—8139. [60] Sorek N, Yalovsky S. Analysis of protein S-acylation by gas chromatography-coupled mass spectrometry using purified proteins[J]. Nature Protocols, 2010,5(5): 834—840. [61] Hang H C, Geutjes E J, Grotenbreg G, Pollington A M, Bijlmakers M J, Ploegh H L. Chemical probes for the rapid detection of Fatty-acylated proteins in Mammalian cells[J]. Journal of the American Chemical Society, 2007,129(10): 2744—2745. [62] Martin B R, Cravatt B F. Large-scale profiling of protein palmitoylation in mammalian cells[J]. Nature Methods, 2009,6(2): 135—138. [63] Speers A E, Cravatt B F. Profiling enzyme activities in vivo using click chemistry methods[J]. Chemistry & Biology, 2004,11(4): 535—546. [64] Forrester M T, Hess D T, Thompson J W, Hultman R, Moseley M A, Stamler J S, Casey P J. Site-specific analysis of protein S-acylation by resin-assisted capture[J]. Journal of Lipid Research, 2011,52: 393—398. [65] Chen H Q, Tannous M, Veluthakal R, Amin R, Kowluru A. Novel roles for palmitoylation of Ras in IL-1 beta-induced nitric oxide release and caspase 3 activation in insulin-secreting beta cells[J]. Biochemical Pharmacology, 2003,66(9): 1681—1694. [66] Aeld E H, Schnell E, Dakoji S, Sweeney N, Zhou Q, Prange O, Gauthier-Campbell C, Aguilera-Moreno A, Nicoll R A, Bredt D S. Synaptic strength regulated by palmitate cycling on PSD-95[J]. Cell, 2002,108(6): 849—863. [67] Drisdel R C, Manzana E, Green W N. The role of palmitoylation in functional expression of nicotinic alpha7 receptors[J]. Journal of Neuroscience, 2004,24(46): 10502—10510. [68] Percherancier Y, Planchenault T, Valenzuela-Fernandez A, Virelizier J L, Arenzana-Seisdedos F, Bachelerie F. Palmitoylation-dependent control of degradation, life span, and membrane expression of the CCR5 receptor[J]. Journal of Biological Chemistry, 2001,276(34): 31936—31944. [69] Oakes N D, Furler S M. Evaluation of free fatty acid metabolism in vivo[J]. Annals of the New York Academy of Sciences, 2002,967(1): 158—175. [70] Chase J F, Tubbs P K. Specific inhibition of mitochondrial fatty acid oxidation by 2-bromopalmitate and its coenzyme A and carnitine esters[J]. Biochemical Journal, 1972,129(1): 55—65. [71] Coleman R A, Rao P, Fogelsong R J, Bardes E S. 2-Bromopalmitoyl-CoA and 2-bromopalmitate: promiscuous inhibitors of membrane-bound enzymes[J]. Biochimica Et Biophysica Acta, 1992,1125(2): 203—209. [72] Brandes R, Arad R, Bar-Tana J. Inducers of adipose conversion activate transcription promoted by a peroxisome proliferators response element in 3T3-L1 cells[J]. Biochemical Pharmacology, 1995,50(11): 1949—1951. [73] Dejesus G, Bizzozero O A. Effect of 2-fluoropalmitate, cerulenin and tunicamycin on the palmitoylation and intracellular translocation of myelin proteolipid protein[J]. Neurochemical Research, 2002,27(12): 1669—1675. [74] Jochen A L, Hays J, Mick G. Inhibitory effects of cerulenin on protein palmitoylation and insulin internalization in rat adipocytes[J]. Biochimica et Biophysica Acta, 1995,1259(1): 65—72. [75] Zheng B, Zhu S, Wu X. A clickable analogue of cerulenin as chemical probe to explore protein palmitoylation[J]. ACS Chemical Biology, 2015,10(1): 115—121. [76] Patterson S I, Skene J H. Novel inhibitory action of tunicamycin homologues suggests a role for dynamic protein fatty acylation in growth cone-mediated neurite extension[J]. Journal of Cell Biology, 1994,124(4): 521—536. [77] Hurley J H, Cahill A L, Currie K P, Fox A P. The role of dynamic palmitoylation in Ca2+ channel inactivation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000,97(16): 9293—9298. [78] Li L, Haynes M P, Bender J R. Plasma membrane localization and function of the estrogen receptor α variant (ER46) in human endothelial cells[J]. Proceedings of the National Academy of Sciences, USA, 2003,100(8): 4807—4812. [79] Zeidman R, Jackson C S, Magee A I. Protein acyl thioesterases (review)[J]. Molecular Membrane Biology, 2009,26(2): 32—41. [80] Duncan J A, Gilman A G. A cytoplasmic acyl-protein thioesterase that removes palmitate from G protein alpha subunits and p21(RAS)[J]. Journal of Biological Chemistry, 1998,273(25): 15830—15837. [81] Yeh D C, Duncan J A, Yamashita S, Michel T. Depalmitoylation of endothelial nitric-oxide synthase by acyl-protein thioesterase 1 is potentiated by Ca2+-Calmodulin[J]. Journal of Biological Chemistry, 1999,274(46): 33148—33154. [82] Duncan J A, Gilman A G. Characterization of Saccharomyces cerevisiae acyl-protein thioesterase 1, the enzyme responsible for G protein alpha subunit deacylation in vivo[J]. Journal of Biological Chemistry, 2002,277(35): 31740—31752. [83] Ohn T, Anderson P. The role of posttranslational modifications in the assembly of stress granules[J]. Wiley Interdisciplinary Reviews-RNA 2010,1(3): 486—493. [84] Yong H C, Kim K N, Pandey G K, Gupta R, Grant J J, Luan S. CBL1, a Calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis[J]. Plant Cell, 2003,15(8): 1833—1845. [85] Albrecht V, Weinl S, Blazevic D, D'Angelo C, Batistic O, Kolukisaoglu U, Bock R, Schulz B, Harter K, Kudla J. The calcium sensor CBL1 integrates plant responses to abiotic stresses[J]. Plant Journal, 2010,36(4): 457—470. [86] Singh A, Vats G, Chandra N, Grover M. Sumoylation may play an important role in modification of large number of proteins associated with heat stress in plants[J]. Proceedings of the National Academy of Sciences India, 2014,84(3): 709—712. [87] Vats G, Grover M, Singh A, Chandra N, Pandey N, Rai A. Role of palmitoylation and nitration in modification of large number of proteins associated with drought stress in plants[J]. Agrica, 2016,5(1): 59—62. |
[1] | 杨马进, 黄文娟, 李 臻, 唐霄铧, 韩菊兰, 叶昌华. 14种川西北高山野生功能性草本花卉植物种子萌发特性[J]. 亚热带植物科学, 2023, 52(3): 228-241. |
[2] | 张 群, 陈 颖, 曹晟烜, 邓传远. 了哥王叶功能性状特征及其对土壤因子的响应[J]. 亚热带植物科学, 2023, 52(1): 60-66. |
[3] | 陈 蕤,朱 华,谢文敏,李海航. 辣木种子主要成分分离制备及功能应用研究进展[J]. 亚热带植物科学, 2022, 51(2): 155-162. |
[4] | 鲍红艳, 于 影, 邓佳宝, 刘宝林, 韩颖颖. 蛋白酶抑制剂对含水生菜种子耐冻性的影响[J]. 亚热带植物科学, 2021, 50(06): 461-470. |
[5] | 谭 璐,邓 涛,张代贵,刘 冰,陈功锡. 湖南猛洞河河谷特殊生境被子植物功能性状多样性及适应性初探[J]. 亚热带植物科学, 2020, 49(04): 279-285. |
[6] | 徐彬瑜,许泽豪,翁殊斐,冼丽铧. 公众对园林绿地功能的认知及其对环境教育的启示——以广州市为例[J]. 亚热带植物科学, 2019, 48(03): 280-284. |
[7] | 田永强. 淡水浮游植物功能类群划分方法及其生态学应用研究进展(综述)[J]. , 2015, 44(04): 349-354. |
[8] | 王光辉,吴黄铭,郑岩,李成梁,陈惠萍. 植物血红素加氧酶生理功能研究进展(综述)[J]. 亚热带植物科学, 2014, 43(02): 170-176. |
[9] | 梁诗,童庆宣,池敏杰. 城市植被对空气负离子的影响[J]. 亚热带植物科学, 2010, 39(04): 46-50. |
[10] | 洪森荣,尹明华. 5种植物生长抑制剂对香果树种质离体保存的影响[J]. 亚热带植物科学, 2009, 38(04): 18-21. |
[11] | 陈冬茵,赖艳艳,许传俊,李玲. 多酚氧化酶抑制剂对蝴蝶兰叶外植体褐变的影响[J]. 亚热带植物科学, 2009, 38(02): 15-18. |
[12] | 江红霞,郑怡. 微藻的药用、保健价值及研究开发现状[J]. 亚热带植物科学, 2003, 32(01): 68-72. |
[13] | 朱国鹏,沈宏. 根系分泌物研究方法[J]. 亚热带植物科学, 2002, 31(S1): 15-21. |
[14] | 王家福,刘月学,林顺权. 枇杷种质资源的离体保存研究Ⅱ生长抑制剂的影响[J]. 亚热带植物科学, 2002, 31(04): 1-4,8. |
[15] | 施益华,刘鹏. 硼在植物体内生理功能研究进展[J]. 亚热带植物科学, 2002, 31(02): 64-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||